scholarly journals What can the Occult do for you? STarlight Attenuation & Reddening Survey of Multiple Occulting Galaxies (STARSMOG)

2015 ◽  
Vol 11 (A29B) ◽  
pp. 173-175
Author(s):  
B. W. Holwerda ◽  
W. C. Keel

AbstractInterstellar dust is still the dominant uncertainty in Astronomy, limiting precision in e.g., cosmological distance estimates and models of how light is re-processed within a galaxy. When a foreground galaxy serendipitously overlaps a more distant one, the latter backlights the dusty structures in the nearer foreground galaxy. Such an overlapping or occulting galaxy pair can be used to measure the distribution of dust in the closest galaxy with great accuracy. The STARSMOG program uses HST observation of occulting galaxy pairs to accurately map the distribution of dust in foreground galaxies in fine (<100 pc) detail. Furthermore, Integral Field Unit observations of such pairs will map the effective extinction curve in these occulting galaxies, disentangling the role of fine-scale geometry and grain composition on the path of light through a galaxy.The overlapping galaxy technique promises to deliver a clear understanding of the dust in galaxies: the dust geometry, a probability function of the amount of dimming as a function of galaxy type, its dependence on wavelength, and evolution of all these properties with cosmic time using distant, high-redshift pairs.

2016 ◽  
Vol 11 (S321) ◽  
pp. 248-250
Author(s):  
B. W. Holwerda ◽  
W. C. Keel

AbstractInterstellar dust is still a dominant uncertainty in Astronomy, limiting precision in e.g., cosmological distance estimates and models of how light is re-processed within a galaxy. When a foreground galaxy serendipitously overlaps a more distant one, the latter backlights the dusty structures in the nearer foreground galaxy.Such an overlapping or occulting galaxy pair can be used to measure the distribution of dust in the closest galaxy with great accuracy. The STARSMOG program uses Hubble to map the distribution of dust in foreground galaxies in fine (<100 pc) detail. Integral Field Unit (IFU) observations will map the effective extinction curve, disentangling the role of fine-scale geometry and grain composition on the path of light through a galaxy.The overlapping galaxy technique promises to deliver a clear understanding of the dust in galaxies: geometry, a probability function of dimming as a function of galaxy mass and radius, and its dependence on wavelength.


2020 ◽  
Vol 498 (4) ◽  
pp. 4983-5002
Author(s):  
D Wittor ◽  
M Gaspari

ABSTRACT Turbulence in the intracluster, intragroup, and circumgalactic medium plays a crucial role in the self-regulated feeding and feedback loop of central supermassive black holes. We dissect the 3D turbulent ‘weather’ in a high-resolution Eulerian simulation of active galactic nucleus (AGN) feedback, shown to be consistent with multiple multiwavelength observables of massive galaxies. We carry out post-processing simulations of Lagrangian tracers to track the evolution of enstrophy, a proxy of turbulence, and its related sinks and sources. This allows us to isolate in depth the physical processes that determine the evolution of turbulence during the recurring strong and weak AGN feedback events, which repeat self-similarly over the Gyr evolution. We find that the evolution of enstrophy/turbulence in the gaseous halo is highly dynamic and variable over small temporal and spatial scales, similar to the chaotic weather processes on Earth. We observe major correlations between the enstrophy amplification and recurrent AGN activity, especially via its kinetic power. While advective and baroclinc motions are always subdominant, stretching motions are the key sources of the amplification of enstrophy, in particular along the jet/cocoon, while rarefactions decrease it throughout the bulk of the volume. This natural self-regulation is able to preserve, as ensemble, the typically observed subsonic turbulence during cosmic time, superposed by recurrent spikes via impulsive anisotropic AGN features (wide outflows, bubbles, cocoon shocks). This study facilitates the preparation and interpretation of the thermo-kinematical observations enabled by new revolutionary X-ray integral field unit telescopes, such as XRISM and Athena.


1999 ◽  
Vol 16 (3) ◽  
pp. 273-287 ◽  
Author(s):  
Peter J. McGregor ◽  
Peter Conroy ◽  
Gabe Bloxham ◽  
Jan van Harmelen

AbstractIn late 1998 the International Gemini Project Office identified a need for a low cost, near-infrared spectrograph to be commissioned on the Gemini South telescope on the shortest possible timescale. In response, the Research School of Astronomy and Astrophysics of the Australian National University proposed to design, construct, and commission a near-infrared, integral-field spectrograph on Gemini. The science drivers and novel design of the Near-infrared Integral-Field Spectrograph (NIFS) are described in this paper. NIFS will achieve significant economies in cost and schedule in several ways:• By addressing targeted science with high efficiency. NIFS will primarily target velocity measurements in galaxies to study the demographics of black holes in galactic nuclei and the evolution of structural properties in high redshift galaxies. However, NIFS will also be applied to a wide range of general astronomical topics, but these will not dictate the instrument design.• By adopting a largely fixed-format design. A 3·2″ × 3·2″ ‘stair-case’ integral field unit (IFU) will feed a near-infrared spectrograph with four fixed-angle gratings mounted on a single grating wheel. A single, fixed-format camera will form the spectral image on a 2048 × 2048 Rockwell HgCdTe HAWAII-2 array. Two-pixel spectral resolving powers of ∼5400 will be achieved with complete wavelength coverage in each of the J, H, and K photometric bands through 32 optimally sampled 0·1″ wide slitlets. The velocity resolution of ∼55 km s−1 will be sufficient to achieve the targeted science objectives, and will allow software rejection of OH airglow lines.• By packaging the NIFS instrument within a duplicate of the Near-Infrared Imager (NIRI) cryostat. The NIRI cryostat, On-Instrument Wavefront Sensor (OIWFS), detector focusing mechanism, control system, and EPICS software will all be duplicated with only minimal change. Construction of the duplicate NIRI cryostat, OIWFS, and control system will be done by the University of Hawaii.


2019 ◽  
Vol 623 ◽  
pp. A89 ◽  
Author(s):  
S. Comerón ◽  
H. Salo ◽  
J. H. Knapen ◽  
R. F. Peletier

Thick discs are nearly ubiquitous components of the discs of present-day galaxies. It has been proposed that a fraction of their stars have been accreted. Here, we aim to find whether accretion of satellites is the main formation mechanism of thick discs. To do so, we observed a sample of eight nearby edge-on galaxies with the Multi-Unit Spectroscopic Explorer (MUSE) integral field unit at the Very Large Telescope (VLT). Six of the galaxies have a distinct thick disc. We derived thick-disc velocities and velocity dispersions for the galaxies in our sample. We devise a formalism to estimate the fractions of retrograde material in the thick discs by using kinematical maps and thin/thick disc decompositions. None of the galaxies in our sample show strong evidence for retrograde material at large distances from the centre. Including those found in the literature, there are seventeen thick discs with studied kinematics, with only one showing unambiguous signatures of retrograde material. Literature numerical studies of dynamical friction allow us to estimate that at the current cosmic time about one in six mergers for which the stars of the accreted galaxy ended in a thick disc were retrograde. This is in tension with the observed fraction of galaxies with a partly retrograde thick disc (one in seventeen). We conclude that satellite accretion is not favoured by observations to be the main formation mechanism of thick discs.


2019 ◽  
Vol 489 (2) ◽  
pp. 2702-2722 ◽  
Author(s):  
Matteo Frigo ◽  
Thorsten Naab ◽  
Michaela Hirschmann ◽  
Ena Choi ◽  
Rachel S Somerville ◽  
...  

ABSTRACT We present a series of 10 × 2 cosmological zoom simulations of the formation of massive galaxies with and without a model for active galactic nucleus (AGN) feedback. Differences in stellar population and kinematic properties are evaluated by constructing mock integral field unit maps. The impact of the AGN is weak at high redshift when all systems are mostly fast rotating and disc-like. After z ∼ 1 the AGN simulations result in lower mass, older, less metal rich, and slower rotating systems with less discy isophotes – in general agreement with observations. 2D kinematic maps of in situ and accreted stars show that these differences result from reduced in-situ star formation due to AGN feedback. A full analysis of stellar orbits indicates that galaxies simulated with AGN are typically more triaxial and have higher fractions of x-tubes and box orbits and lower fractions of z-tubes. This trend can also be explained by reduced late in-situ star formation. We introduce a global parameter, ξ3, to characterize the anticorrelation between the third-order kinematic moment h3 and the line-of-sight velocity (Vavg/σ), and compare to ATLAS3D observations. The kinematic correlation parameter ξ3 might be a useful diagnostic for large integral field surveys as it is a kinematic indicator for intrinsic shape and orbital content.


2019 ◽  
Vol 15 (S352) ◽  
pp. 326-330
Author(s):  
Leindert A. Boogaard

AbstractMapping the molecular gas content of the universe is key to our understanding of the build-up of galaxies over cosmic time. Spectral line scans in deep fields, such as the Hubble Ultra Deep Field (HUDF), provide a unique view on the cold gas content out to high redshift. By conducting ‘spectroscopy-of-everything’, these flux-limited observations are sensitive to the molecular gas in galaxies without preselection, revealing the cold gas content of galaxies that would not be selected in traditional studies.In order to capitalize on the molecular gas observations, knowledge about the physical conditions of the galaxies detected in molecular gas, such as their interstellar medium conditions, is key. Fortunately, deep surveys with integral-field spectrographs are providing an unprecedented view of the galaxy population, providing redshifts and measurements of restframe UV/optical lines for thousands of galaxies.We present the results from the synergy between the ALMA Spectroscopic Survey of the HUDF (ASPECS), with deep integral field spectroscopy from the MUSE HUDF survey and multi-wavelength data. We discuss the nature of the galaxies detected in molecular gas without preselection and their physical properties, such as star formation rate and metallicity. We show how the combination of ALMA and MUSE integral field spectroscopy can constrain the physical properties in galaxies located around the main sequence during the peak of galaxy formation.


2019 ◽  
Vol 15 (S352) ◽  
pp. 336-336
Author(s):  
Catarina Alves de Oliveira

AbstractThe near-infrared spectrograph NIRSpec is one of four instruments aboard the James Webb Space Telescope (JWST). It offers seven dispersers covering the wavelength range from 0.6 to 5.3 micron with resolutions from R ∼ 100 to R ∼ 2700. Using an array of micro-shutters for target selection, the multi-object spectroscopy mode of NIRSpec will be capable of obtaining spectra from a few tens to more than 200 objects simultaneously. It also features an integral field unit with a 3 by 3 arcseconds field of view, and various slits for high contrast spectroscopy of individual objects. We will provide an overview of the capabilities and performances of these three observing modes highlighting how NIRSpec will contribute to the quest to further understand the assembly and evolution of galaxies from the end of re-ionisation epoch to the present day.


2003 ◽  
Author(s):  
Jacques R. D. Lepine ◽  
Antonio C. de Oliveira ◽  
Milito V. Figueredo ◽  
Bruno V. Castilho ◽  
Clemens Gneiding ◽  
...  
Keyword(s):  

2020 ◽  
Vol 500 (4) ◽  
pp. 4937-4957 ◽  
Author(s):  
G Martin ◽  
R A Jackson ◽  
S Kaviraj ◽  
H Choi ◽  
J E G Devriendt ◽  
...  

ABSTRACT Dwarf galaxies (M⋆ &lt; 109 M⊙) are key drivers of mass assembly in high-mass galaxies, but relatively little is understood about the assembly of dwarf galaxies themselves. Using the NewHorizon cosmological simulation (∼40 pc spatial resolution), we investigate how mergers and fly-bys drive the mass assembly and structural evolution of around 1000 field and group dwarfs up to z = 0.5. We find that, while dwarf galaxies often exhibit disturbed morphologies (5 and 20 per cent are disturbed at z = 1 and z = 3 respectively), only a small proportion of the morphological disturbances seen in dwarf galaxies are driven by mergers at any redshift (for 109 M⊙, mergers drive under 20 per cent morphological disturbances). They are instead primarily the result of interactions that do not end in a merger (e.g. fly-bys). Given the large fraction of apparently morphologically disturbed dwarf galaxies which are not, in fact, merging, this finding is particularly important to future studies identifying dwarf mergers and post-mergers morphologically at intermediate and high redshifts. Dwarfs typically undergo one major and one minor merger between z = 5 and z = 0.5, accounting for 10 per cent of their total stellar mass. Mergers can also drive moderate star formation enhancements at lower redshifts (3 or 4 times at z = 1), but this accounts for only a few per cent of stellar mass in the dwarf regime given their infrequency. Non-merger interactions drive significantly smaller star formation enhancements (around two times), but their preponderance relative to mergers means they account for around 10 per cent of stellar mass formed in the dwarf regime.


Sign in / Sign up

Export Citation Format

Share Document