scholarly journals The Life and Death of Massive Stars in the Starburst Galaxy I Zw 18

2015 ◽  
Vol 11 (A29B) ◽  
pp. 215-216
Author(s):  
Dorottya Szécsi ◽  
Norbert Langer

AbstractMassive stars at low metallicity are strong candidates for two of the most energetic explosions in the Universe: long duration gamma-ray bursts and superluminous supernovae. But what is the reason these explosions prefer low metallicity environments? To answer this question, we investigate how massive stellar evolution proceeds in low metallicity environments.

2011 ◽  
Vol 7 (S279) ◽  
pp. 75-82
Author(s):  
Paolo A. Mazzali

AbstractThe properties of the Supernovae discovered in coincidence with long-duration Gamma-ray Bursts and X-Ray Flashes are reviewed, and compared to those of SNe for which GRBs are not observed. The SNe associated with GRBs are of Type Ic, they are brighter than the norm, and show very broad absorption lines in their spectra, indicative of high expansion velocities and hence of large explosion kinetic energies. This points to a massive star origin, and to the birth of a black hole at the time of core collapse. There is strong evidence for gross asymmetries in the SN ejecta. The observational evidence seems to suggest that GRB/SNe are more massive and energetic than XRF/SNe, and come from more massive stars. While for GRB/SNe the collapsar model is favoured, XRF/SNe may host magnetars.


Author(s):  
Rhaana L.C Starling

Gamma-ray bursts are the most powerful objects in the Universe. Discovered in the 1960s as brief flashes of gamma radiation, we now know that they emit across the entire electromagnetic spectrum, are located in distant galaxies and comprise two distinct populations, one of which may originate in the deaths of massive stars. The launch of the Swift satellite in 2004 brought a flurry of new discoveries, advancing our understanding of these sources and the galaxies that host them. I highlight a number of important results from the Swift era thus far.


2007 ◽  
Vol 3 (S250) ◽  
pp. 217-230 ◽  
Author(s):  
Raphael Hirschi ◽  
Cristina Chiappini ◽  
Georges Meynet ◽  
André Maeder ◽  
Sylvia Ekström

AbstractMassive stars played a key role in the early evolution of the Universe. They formed with the first halos and started the re-ionisation. It is therefore very important to understand their evolution. In this review, we first recall the effect of metallicity (Z) on the evolution of massive stars. We then describe the strong impact of rotation induced mixing and mass loss at very low Z. The strong mixing leads to a significant production of primary 14N, 13C and 22Ne. Mass loss during the red supergiant stage allows the production of Wolf-Rayet stars, type Ib,c supernovae and possibly gamma-ray bursts (GRBs) down to almost Z = 0 for stars more massive than 60 M⊙. Galactic chemical evolution models calculated with models of rotating stars better reproduce the early evolution of N/O, C/O and 12C/13C. Finally, the impact of magnetic fields is discussed in the context of GRBs.


2005 ◽  
Vol 192 ◽  
pp. 459-466
Author(s):  
Alberto J. Castro-Tirado

SummarySince their discovery in 1967 Gamma-ray bursts (GRBs) have been puzzling to astrophysicists. With the advent of a new generation of X–ray satellites in the late 90’s, it was possible to carry out deep multi-wavelength observations of the counterparts associated with the long duration GRBs class just within a few hours of occurrence, thanks to the observation of the fading X-ray emission that follows the more energetic gamma-ray photons once the GRB event has ended. The fact that this emission (the afterglow) extends at longer wavelengths, led to the discovery of optical/IR/radio counterparts in 1997-2003, greatly improving our understanding of these sources. The classical, long duration GRBs, have been observed to originate at cosmological distances in a range of redshifts with 0.1685 ≤ z ≤ 4.50 implying energy releases of ~ 1051 ergs. The recent results on GRB 021004 and GRB 030329 confirm that the central engines that power these extraordinary events are due to be collapse of massive stars rather than the merging of compact objects as previously also suggested. Short GRBs still remain a mystery as no counterparts have been detected so far.


Science ◽  
2013 ◽  
Vol 343 (6166) ◽  
pp. 48-51 ◽  
Author(s):  
A. Maselli ◽  
A. Melandri ◽  
L. Nava ◽  
C. G. Mundell ◽  
N. Kawai ◽  
...  

Long-duration gamma-ray bursts (GRBs) are an extremely rare outcome of the collapse of massive stars and are typically found in the distant universe. Because of its intrinsic luminosity (L ∼ 3 × 1053 ergs per second) and its relative proximity (z = 0.34), GRB 130427A reached the highest fluence observed in the γ-ray band. Here, we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-meter Liverpool and Faulkes telescopes, and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early universe and over the full range of GRB isotropic energies.


2017 ◽  
Vol 12 (S331) ◽  
pp. 39-44
Author(s):  
Antonio de Ugarte Postigo ◽  
Christina Thöne ◽  
Zach Cano ◽  
David Alexander Kann ◽  
Luca Izzo ◽  
...  

AbstractObserving the supernovae (SNe) associated to the different types of gamma-ray bursts (GRBs) is one of the few means to study their progenitors. In the past years, it has become clear that GRB-like events are more heterogeneous than previously thought. There is a marked difference between long GRBs, which are produced by the collapse of very massive stars and are normally associated with broad-lined type Ic SNe, and short bursts, which occur when two compact objects merge and that, at least in some cases, can produce an associated kilonova. Moreover, the SNe associated with different sub-types of long GRBs are also seen to differ, especially those associated with ultra-long duration GRBs. To address this issue in a systematic way we started an observing programme in 2010 at the 10.4m GTC telescope. Here we present some results of our programme, including the detection of 12 new GRB-SNe. Highlights of our sample are the discovery of the first spectroscopic SN associated with a highly energetic (Eγ, iso ~ 1054 erg) “cosmological” burst (GRB 130427A), the study of the SN associated with a shock-breakout GRB (GRB 140606B) and the SN associated with the peculiar ultra-long GRB 101225A at z = 0.85. The sample includes also the follow-up of several short GRBs in search for kilonovae emission (GRB 130603B and GRB 160821B are important examples). Amongst our latest results we present the photometric and spectroscopic observations of the SNe associated with GRB 150818A and GRB 161219B.


2008 ◽  
Vol 4 (S256) ◽  
pp. 337-342
Author(s):  
Raphael Hirschi ◽  
Sylvia Ekström ◽  
Cyril Georgy ◽  
Georges Meynet ◽  
André Maeder

AbstractThe Magellanic Clouds are great laboratories to study the evolution of stars at two metallicities lower than solar. They provide excellent testbeds for stellar evolution theory and in particular for the impact of metallicity on stellar evolution. It is important to test stellar evolution models at metallicities lower than solar in order to use the models to predict the evolution and properties of the first stars. In these proceedings, after recalling the effects of metallicity, we present stellar evolution models including the effects of rotation at the Magellanic Clouds metallicities. We then compare the models to various observations (ratios of sub-groups of massive stars and supernovae, nitrogen surface enrichment and gamma-ray bursts) and show that the models including the effects of rotation reproduce most of the observational constraints.


2011 ◽  
Vol 7 (S279) ◽  
pp. 9-17
Author(s):  
Paul A. Crowther

AbstractThe locations of massive stars (≥ 8M⊙) within their host galaxies is reviewed. These range from distributed OB associations to dense star clusters within giant Hii regions. A comparison between massive stars and the environments of core-collapse supernovae and long duration Gamma Ray Bursts is made, both at low and high redshift. We also address the question of the upper stellar mass limit, since very massive stars (VMS, Minit ≫ 100M⊙) may produce exceptionally bright core-collapse supernovae or pair instability supernovae.


2016 ◽  
Vol 12 (S324) ◽  
pp. 49-53
Author(s):  
N. R. Tanvir

AbstractOur understanding of gamma-ray bursts (GRBs) has come a long way in the past fifty years since their first detection. We now know that GRBs arise in distant galaxies and that there are at least two distinct sub-classes, the long-duration class being produced by some rare massive star core collapse and the short-duration class likely by compact binary mergers involved neutron stars. In both cases, the final remnant will be a stellar-mass black-hole or a massive neutron star. The bursts themselves are associated with ultra-relativistic jetted outflows created by these events, and their afterglows by the impact of these outflows on the surrounding circumburst material. Increasingly GRBs are also being used as probes of the universe, both for understanding galaxy evolution back to the era of reionization, and for the physics of gravitational wave sources. However, many aspects of GRBs remain poorly understood, some pointers to which are given here.


2010 ◽  
Vol 6 (S272) ◽  
pp. 300-301
Author(s):  
Christophe Martayan ◽  
Dietrich Baade ◽  
Juan Zorec ◽  
Yves Frémat ◽  
Juan Fabregat ◽  
...  

AbstractAt low metallicity B-type stars rotate faster than at higher metallicity, typically in the SMC. As a consequence, a larger number of fast rotators is expected in the SMC than in the Galaxy, in particular more Be/Oe stars. With the ESO-WFI in its slitless mode, we examined the SMC open clusters and found an occurence of Be stars 3 to 5 times larger than in the Galaxy. The evolution of the angular rotational velocity seems to be the main key on the understanding of the specific behaviour and stellar evolution of such stars at different metallicities. With the results of this WFI study and using observational clues on the SMC WR stars and massive stars, as well as the theoretical indications of long gamma-ray burst progenitors, we identify the low metallicity massive Be and Oe stars as potential LGRB progenitors. Therefore the expected rates and numbers of LGRB are calculated and compared to the observed ones, leading to a good probability that low metallicity Be/Oe stars are actually LGRB progenitors.


Sign in / Sign up

Export Citation Format

Share Document