scholarly journals GRB 130427A: A Nearby Ordinary Monster

Science ◽  
2013 ◽  
Vol 343 (6166) ◽  
pp. 48-51 ◽  
Author(s):  
A. Maselli ◽  
A. Melandri ◽  
L. Nava ◽  
C. G. Mundell ◽  
N. Kawai ◽  
...  

Long-duration gamma-ray bursts (GRBs) are an extremely rare outcome of the collapse of massive stars and are typically found in the distant universe. Because of its intrinsic luminosity (L ∼ 3 × 1053 ergs per second) and its relative proximity (z = 0.34), GRB 130427A reached the highest fluence observed in the γ-ray band. Here, we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-meter Liverpool and Faulkes telescopes, and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early universe and over the full range of GRB isotropic energies.

2011 ◽  
Vol 7 (S279) ◽  
pp. 9-17
Author(s):  
Paul A. Crowther

AbstractThe locations of massive stars (≥ 8M⊙) within their host galaxies is reviewed. These range from distributed OB associations to dense star clusters within giant Hii regions. A comparison between massive stars and the environments of core-collapse supernovae and long duration Gamma Ray Bursts is made, both at low and high redshift. We also address the question of the upper stellar mass limit, since very massive stars (VMS, Minit ≫ 100M⊙) may produce exceptionally bright core-collapse supernovae or pair instability supernovae.


2011 ◽  
Vol 7 (S279) ◽  
pp. 75-82
Author(s):  
Paolo A. Mazzali

AbstractThe properties of the Supernovae discovered in coincidence with long-duration Gamma-ray Bursts and X-Ray Flashes are reviewed, and compared to those of SNe for which GRBs are not observed. The SNe associated with GRBs are of Type Ic, they are brighter than the norm, and show very broad absorption lines in their spectra, indicative of high expansion velocities and hence of large explosion kinetic energies. This points to a massive star origin, and to the birth of a black hole at the time of core collapse. There is strong evidence for gross asymmetries in the SN ejecta. The observational evidence seems to suggest that GRB/SNe are more massive and energetic than XRF/SNe, and come from more massive stars. While for GRB/SNe the collapsar model is favoured, XRF/SNe may host magnetars.


2005 ◽  
Vol 192 ◽  
pp. 459-466
Author(s):  
Alberto J. Castro-Tirado

SummarySince their discovery in 1967 Gamma-ray bursts (GRBs) have been puzzling to astrophysicists. With the advent of a new generation of X–ray satellites in the late 90’s, it was possible to carry out deep multi-wavelength observations of the counterparts associated with the long duration GRBs class just within a few hours of occurrence, thanks to the observation of the fading X-ray emission that follows the more energetic gamma-ray photons once the GRB event has ended. The fact that this emission (the afterglow) extends at longer wavelengths, led to the discovery of optical/IR/radio counterparts in 1997-2003, greatly improving our understanding of these sources. The classical, long duration GRBs, have been observed to originate at cosmological distances in a range of redshifts with 0.1685 ≤ z ≤ 4.50 implying energy releases of ~ 1051 ergs. The recent results on GRB 021004 and GRB 030329 confirm that the central engines that power these extraordinary events are due to be collapse of massive stars rather than the merging of compact objects as previously also suggested. Short GRBs still remain a mystery as no counterparts have been detected so far.


2019 ◽  
Vol 486 (2) ◽  
pp. 2471-2476 ◽  
Author(s):  
B Gendre ◽  
Q T Joyce ◽  
N B Orange ◽  
G Stratta ◽  
J L Atteia ◽  
...  

Abstract Ultra-long gamma-ray bursts are a class of high-energy transients lasting several hours. Their exact nature is still elusive, and several models have been proposed to explain them. Because of the limited coverage of wide-field gamma-ray detectors, the study of their prompt phase with sensitive narrow-field X-ray instruments could help in understanding the origin of ultra-long GRBs. However, the observers face a true problem in rapidly activating follow-up observations, due to the challenging identification of an ultra-long GRB before the end of the prompt phase. We present here a comparison of the prompt properties available after a few tens of minutes of a sample of ultra-long GRBs and normal long GRBs, looking for prior indicators of the long duration. We find that there is no such clear prior indicator of the duration of the burst. We also found that statistically, a burst lasting at least 10 and 20 minutes has respectively $28{{\ \rm per\ cent}}$ and $50{{\ \rm per\ cent}}$ probability to be an ultralong event. These findings point towards a common central engine for normal long and ultra-long GRBs, with the collapsar model privileged.


2017 ◽  
Vol 12 (S331) ◽  
pp. 39-44
Author(s):  
Antonio de Ugarte Postigo ◽  
Christina Thöne ◽  
Zach Cano ◽  
David Alexander Kann ◽  
Luca Izzo ◽  
...  

AbstractObserving the supernovae (SNe) associated to the different types of gamma-ray bursts (GRBs) is one of the few means to study their progenitors. In the past years, it has become clear that GRB-like events are more heterogeneous than previously thought. There is a marked difference between long GRBs, which are produced by the collapse of very massive stars and are normally associated with broad-lined type Ic SNe, and short bursts, which occur when two compact objects merge and that, at least in some cases, can produce an associated kilonova. Moreover, the SNe associated with different sub-types of long GRBs are also seen to differ, especially those associated with ultra-long duration GRBs. To address this issue in a systematic way we started an observing programme in 2010 at the 10.4m GTC telescope. Here we present some results of our programme, including the detection of 12 new GRB-SNe. Highlights of our sample are the discovery of the first spectroscopic SN associated with a highly energetic (Eγ, iso ~ 1054 erg) “cosmological” burst (GRB 130427A), the study of the SN associated with a shock-breakout GRB (GRB 140606B) and the SN associated with the peculiar ultra-long GRB 101225A at z = 0.85. The sample includes also the follow-up of several short GRBs in search for kilonovae emission (GRB 130603B and GRB 160821B are important examples). Amongst our latest results we present the photometric and spectroscopic observations of the SNe associated with GRB 150818A and GRB 161219B.


2005 ◽  
Vol 192 ◽  
pp. 417-423
Author(s):  
A.I. MacFadyen

SummaryLong duration gamma-ray bursts are associated with the death of massive stars as earlier observations and theoretical arguments had suggested. Supernova 2003dh observed with GRB030329 confirms this picture. Current progress in developing numerical special relativistic hydrodynamics codes with adaptive mesh refinement is allowing for high-resolution simulations of relativistic flow relevant for simulations of GRBs.


2012 ◽  
Vol 8 (S290) ◽  
pp. 361-363
Author(s):  
Zhibin Zhang ◽  
Yongfeng Huang ◽  
Hongchao Liu

AbstractBy collecting 17 short gamma-ray bursts with necessary data, we find a correlation of Lp ∝ Ep,i1.7, which is very consistent with that derived from a greatly expanded sample of 148 Swift long gamma-ray bursts. It is argued that the radiation mechanism of both long and short gamma-ray bursts should be similar, i.e., of quasi-thermal origin caused by the photosphere and the dissipation occurring very near the central engine. In addition, we suggest that the Ep,i-Lp relation can be used to identified a burst among normal short bursts, short bursts with extended emission and long bursts with short-hard properties. We also find the ratio of peak energy to fluence in the prompt γ-ray band is a prospective discriminator, similar to the traditional duration time.


2005 ◽  
Vol 192 ◽  
pp. 543-553
Author(s):  
Abraham Loeb

SummaryGamma-Ray Bursts (GRBs) are believed to originate in compact remnants (black holes or neutron stars) of massive stars. Their high luminosities make them detectable out to the edge of the visible universe. We describe the many advantages of GRB afterglows relative to quasars as probes of the intergalactic medium during the epoch of reionization. The Swift satellite, planned for launch by the end of 2004, will likely open a new era in observations of the high redshift universe.


2011 ◽  
Vol 7 (S279) ◽  
pp. 289-296 ◽  
Author(s):  
Niccolò Bucciantini

AbstractIn the last few years, evidences for a long-lived and sustained engine in Gamma Ray Bursts (GRBs) have increased the attention to the so called millisecond-magnetar model, as a competitive alternative to the standard collapsar scenario. I will review here the key aspects of the millisecond magnetar model for Long Duration Gamma Ray Bursts (LGRBs). I will briefly describe what constraints present observations put on any engine model, both in terms of energetics, outflow properties, and the relation with the associated Supernova (SN). For each of these I will show how the millisecond magnetar model satisfies the requirements, what are the limits of the model, how can it be further tested, and what observations might be used to discriminate against it. I will also discuss numerical results that show the importance of the confinement by the progenitor star in explaining the formation of a collimated outflow, how a detailed model for the evolution of the central engine can be built, and show that a wide variety of explosive events can be explained by different magnetar parameters. I will conclude with a suggestion that magnetars might be at the origin of the Extended Emission (EE) observed in a significant fraction of Short GRBs.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 215-216
Author(s):  
Dorottya Szécsi ◽  
Norbert Langer

AbstractMassive stars at low metallicity are strong candidates for two of the most energetic explosions in the Universe: long duration gamma-ray bursts and superluminous supernovae. But what is the reason these explosions prefer low metallicity environments? To answer this question, we investigate how massive stellar evolution proceeds in low metallicity environments.


Sign in / Sign up

Export Citation Format

Share Document