A population synthesis study of the local white dwarf population

2017 ◽  
Vol 13 (S334) ◽  
pp. 374-375
Author(s):  
Santiago Torres ◽  
Florian Nutten ◽  
Georgy Skorobogatov ◽  
Enrique García-Berro

AbstractWhite dwarfs are natural cosmochronometers, and this allows us to use them to study relevant properties of the Galaxy, such as its age or its star formation rate history. Here we present a population synthesis study of the white dwarf population within 40 pc from the Sun, and compare the results of this study with the properties of the observed sample. We use a state-of-the-art population synthesis code based on Monte Carlo techniques that incorporates the most recent and reliable white dwarf cooling sequences, an accurate description of the Galactic neighborhood, and a realistic treatment of all the known observational biases.

Author(s):  
F. Zhang ◽  
L. Li ◽  
Z. Han

AbstractUsing the Yunnan-II evolutionary population synthesis models comprising binary stars, we find that the inclusion of binary stars can raise the derived stellar metallicity Z* and/or age t (degeneracy problem), raise the stellar mass M*, lower the gaseous metallicity Zgas and star formation rate (SFR) of galaxies. This means that a few stars form recently in galaxies, while more stars form during the entire evolution process when considering binary stars. If the degeneracy between t and Z* can be broken, its effect on the feedback process and star formation history can be determined.


2010 ◽  
Vol 6 (S270) ◽  
pp. 503-506
Author(s):  
Pedro Colín ◽  
Vladimir Avila-Reese ◽  
Octavio Valenzuela

AbstractCosmological Adaptive Mesh Refinement simulations are used to study the specific star formation rate (sSFR=SSF/Ms) history and the stellar mass fraction, fs=Ms/MT, of small galaxies, total masses MT between few × 1010 M⊙ to few ×1011 M⊙. Our results are compared with recent observational inferences that show the so-called “downsizing in sSFR” phenomenon: the less massive the galaxy, the higher on average is its sSFR, a trend seen at least since z ~ 1. The simulations are not able to reproduce this phenomenon, in particular the high inferred values of sSFR, as well as the low values of fs constrained from observations. The effects of resolution and sub-grid physics on the SFR and fs of galaxies are discussed.


2021 ◽  
Vol 7 (2) ◽  
pp. 49-57
Author(s):  
D. N. Chhatkuli ◽  
S. Paudel ◽  
A. K. Gautam ◽  
B. Aryal

We studied the spectroscopic properties of the low redshift (z = 0.0130) interacting dwarf galaxy SDSS J114818.18-013823.7. It is a compact galaxy of half-light radius 521 parsec. It’s r-band absolute magnitude is -16.71 mag. Using a publicly available optical spectrum from the Sloan Sky Survey data archive, we calculated star-formation rate, emission line metallicity, and dust extinction of the galaxy. Star formation rate (SFR) due to Hα is found to be 0.118 Mʘ year-1 after extinction correction. The emission-line metallicity, 12+log(O/H), is 8.13 dex. Placing these values in the scaling relation of normal galaxies, we find that SDSS J114818.18-013823.7 is a significant outlier from both size-magnitude relation and SFR-B-band absolute relation. Although SDSS J114818.18-013823.7 possess enhance rate of star-formation, the current star-formation activity can persist several Giga years in the future at the current place and it remains compact.


2019 ◽  
Vol 14 (S353) ◽  
pp. 262-263
Author(s):  
Shuai Feng ◽  
Shi-Yin Shen ◽  
Fang-Ting Yuan

AbstractThe interaction between galaxies is believed to be the main origin of the peculiarities of galaxies. It can disturb not only the morphology but also the kinematics of galaxies. These disturbed and asymmetric features are the indicators of galaxy interaction. We study the velocity field of ionized gas in galaxy pairs based on MaNGA survey. Using the kinemetry package, we fit the velocity field and quantify the degree of kinematic asymmetry. We find that the fraction of high kinematic asymmetry is much higher for galaxy pairs with dp⩽30h−1kpc. Moreover, compared to a control sample of single galaxies, we find that the star formation rate is enhanced in paired galaxies with high kinematic asymmetry. For paired galaxies with low kinematic asymmetry, no significant SFR enhancement has been found. The galaxy pairs with high kinematic asymmetry are more likely to be real interacting galaxies rather than projected pairs.


1996 ◽  
Vol 157 ◽  
pp. 54-62
Author(s):  
Tim G. Hawarden ◽  
J. H. Huang ◽  
Q. S. Gu

AbstractAmongst relatively undisturbed spiral galaxies of type ≤ Sc barred morphology is unquestionably associated with powerful mid- and Far-IR emission. On the other hand, even amongst early type galaxies, those with LFIR/LB < 1/3 exhibit no association of high relative FIR luminosity with barred morphology, but some association of IR colors resembling those of star formation regions (SFRs). Amongst systems with LFIR/LB < 0.1 this ratio may be anti-correlated with barredness. It appears that enhanced IR emission from those galaxies whose star formation rate is currently elevated by the the bar translates them into the group with higher FIR-to-optical luminosity ratios. Depletion of extended nearnuclear gas and dust, once the bar has swept up the currently-available supplies, may reduce the fraction of the background stellar radiation field which can be converted to FIR radiation in the inner, most luminous parts of the galaxy. Thus, after the starburst has subsided, such galaxies may be less FIR-luminous than unbarred systems. Several uncertainties remain: it is still not clear whether barred morphology is a necessary condition for the generation of a starburst in an otherwise undisturbed galaxy, while evidence as to the effect of differing bar strengths is conflicting.


2019 ◽  
Vol 487 (3) ◽  
pp. 4153-4168 ◽  
Author(s):  
Joshua J D’Agostino ◽  
Lisa J Kewley ◽  
Brent A Groves ◽  
Anne M Medling ◽  
Enrico Di Teodoro ◽  
...  

ABSTRACT In the optical spectra of galaxies, the separation of line emission from gas ionized by star formation and an active galactic nucleus (AGN), or by star formation and shocks, are very well-understood problems. However, separating line emission between AGN and shocks has proven difficult. With the aid of a new three-dimensional diagnostic diagram, we show the simultaneous separation of line emission from star formation, shocks, and AGN in NGC 1068, and quantify the ratio of star formation, shocks, and AGN in each spaxel. The AGN, shock, and star formation luminosity distributions across the galaxy accurately align with X-ray, radio, and CO(3–2) observations, respectively. Comparisons with previous separation methods show that the shocked emission heavily mixes with the AGN emission. We also show that if the H α flux is to be used as a star formation rate indicator, separating line emission from as many sources as possible should be attempted to ensure accurate results.


2020 ◽  
Vol 495 (1) ◽  
pp. L22-L26 ◽  
Author(s):  
L Vallini ◽  
A Ferrara ◽  
A Pallottini ◽  
S Carniani ◽  
S Gallerani

ABSTRACT We present a novel method to simultaneously characterize the star formation law and the interstellar medium properties of galaxies in the epoch of reionization (EoR) through the combination of [C ii] 158 μm (and its known relation with star formation rate) and C iii] λ1909 Å emission line data. The method, based on a Markov chain Monte Carlo algorithm, allows us to determine the target galaxy average density, n, gas metallicity, Z, and ‘burstiness’ parameter, κs, quantifying deviations from the Kennicutt–Schmidt relation. As an application, we consider COS-3018 (z = 6.854), the only EoR Lyman Break Galaxy so far detected in both [C ii] and C iii]. We show that COS-3018 is a moderate starburst (κs ≈ 3), with $Z \approx 0.4 \, \mathrm{Z}_{\odot }$, and $n \approx 500\, {\rm cm^{-3}}$. Our method will be optimally applied to joint ALMA and James Webb Space Telescope targets.


2015 ◽  
Vol 11 (S315) ◽  
pp. 236-239
Author(s):  
Johan H. Knapen ◽  
Mauricio Cisternas ◽  
Miguel Querejeta

AbstractWe investigate the influence of interactions on the star formation by studying a sample of almost 1500 of the nearest galaxies, all within a distance of ~45 Mpc. We define the massive star formation rate (SFR), as measured from far-IR emission, and the specific star formation rate (SSFR), which is the former quantity normalized by the stellar mass of the galaxy, and explore their distribution with morphological type and with stellar mass. We then calculate the relative enhancement of these quantities for each galaxy by normalizing them by the median SFR and SSFR values of individual control populations of similar non-interacting galaxies. We find that both SFR and SSFR are enhanced in interacting galaxies, and more so as the degree of interaction is higher. The increase is, however, moderate, reaching a maximum of a factor of 1.9 for the highest degree of interaction (mergers). The SFR and SSFR are enhanced statistically in the population, but in most individual interacting galaxies they are not enhanced at all. We discuss how those galaxies with the largest SFR and/or SSFR enhancement can be defined as starbursts. We argue that this study, based on a representative sample of nearby galaxies, should be used to place constraints on studies based on samples of galaxies at larger distances.


2011 ◽  
Vol 7 (S284) ◽  
pp. 468-470
Author(s):  
Danielle M. Nielsen ◽  
Roberto de Propris ◽  
Susan E. Ridgway ◽  
Tomotsugu Goto

AbstractWe stack FIRST survey cutout images of 811 K+A galaxies to derive a mean 1.4 GHz radio image of our sample from which we measure a mean K+A flux density of 56 μJy. We carry out Monte Carlo simulations by randomly selecting radio-quiet white dwarfs to create 10,000 stacks equivalent to our K+A stack. From the measured fluxes of these stacks, we establish a 5σ detection limit of 43 μJy for stacked images. For the average redshift of our sample, we find an mean star formation rate of ~1.7 M⊙ yr−1. We split the sample by age and find a mean radio flux of 60 μJy, which corresponds to a star formation rate of 1.6 M⊙ yr−1, for galaxies with starburst ages less than 250 Myr.


2020 ◽  
Vol 25 (2) ◽  
pp. 55-60
Author(s):  
Daya Nidhi Chhatkuli ◽  
Sanjaya Paudel ◽  
Binil Aryal

We present a study of the Sloan Digital all Sky Survey Data Release 12 (SDSS DR12) optical spectra of an interacting dwarf galaxy NGC 2604 that has redshift 0.0069. Thirteen characteristic emission lines were identified in the wavelength range of 3885 Å to 6742 Å, the strongest line was due to Hα emission with a value of emission-line flux 1538.8 erg/s/cm2/Å. The other twelve emission lines were observed because of OI doublet, Hβ, Hγ, Hδ, OIII doublet, HeI, SII doublet and NII doublet transitions. Eleven characteristic lines agreed perfectly with the Gaussian distribution with greater than 99.9 % coefficient of regression. However, full-width half maximum (FWHM) was found to be less than 5 Å. No absorption metallic lines were observed in the spectra which indicates that the galaxy was either newly formed. The line metallicity of the galaxy was found to be 8.4 dex and the extinction coefficient was 0.2134. The star formation rate due to Hα emission after extinction correction was found to be 0.0927 Mʘ year -1 which is almost double of the value (0.057 Mʘ year -1) before correction.


Sign in / Sign up

Export Citation Format

Share Document