scholarly journals The eclipses of the black widow pulsar J1810+1744 at low radio frequencies

2017 ◽  
Vol 13 (S337) ◽  
pp. 396-397
Author(s):  
Elliott J. Polzin ◽  
Rene P. Breton ◽  
Ben W. Stappers ◽  

AbstractHere we present a study of the radio frequency eclipses of the black widow pulsar J1810+1744 at low frequencies, where we are most sensitive to small deviations in the effects of material along the line of sight. Utilising the simultaneous dual beamforming and interferometric (imaging) mode of LOFAR High Band Antenna, pulsar flux variations throughout the orbit are compared for the two observing techniques to test for the presence of scattering and absorption at eclipse orbital phases. Dispersion measure and scattering variations are used as a sensitive probe into outermost edges of the eclipsing material surrounding the companion star. We find the eclipsing medium to be variable on timescales shorter than the 3.6 hr orbital period, and propose cyclotron-synchrotron absorption as the most likely primary eclipse mechanism.

2011 ◽  
Vol 57 (201) ◽  
pp. 53-60 ◽  
Author(s):  
Patrick Riesen ◽  
Tazio Strozzi ◽  
Andreas Bauder ◽  
Andreas Wiesmann ◽  
Martin Funk

AbstractWe report measurements using a portable real aperture radar (Gamma Portable Radar Interferometer (GPRI)) for interferometric imaging of the surface ice motion on Gornergletscher, Switzerland, during the drainage of the adjacent ice-marginal lake Gornersee. The GPRI tracked the surface ice motion in line of sight over an area of ∼3 km2 down-glacier of Gornersee almost continuously during the drainage event. The displacement maps derived from the acquired interferograms capture the spatial distribution of the surface ice motion. Due to fast acquisition times of the microwave images, the GPRI was able to record sub-daily variations of the ice displacements, most likely caused by the impact of the Gornersee drainage on the ice motion of Gornergletscher. In situ point measurements of the ice displacement agree reasonably well with the results obtained by the GPRI and highlight the use of the GPRI for high-resolution measurements of glacier surface ice motion.


1996 ◽  
Vol 160 ◽  
pp. 479-480
Author(s):  
Bärbel Koribalski ◽  
Simon Johnston ◽  
Joel Weisberg

We have observed 21-cm absorption and emission spectra in the direction of about 20 southern pulsars with the Parkes telescope to derive their kinematic distances and to study the interstellar medium. In each case we thoroughly investigated the environment of each pulsar as well as sources along the line of sight which may contribute to the pulsars’ dispersion measure (DM).Some of the results, which are published in Koribalski et al. (1995) and Johnston et al. (1996), are included in the compilation of Hi absorption measurements by Joel Weisberg in this volume. In the following we present a detailed discussion on pulsars toward 1) the Gum Nebula and 2) the Carina Arm.


1964 ◽  
Vol 20 ◽  
pp. 116-122
Author(s):  
M. M. Komesaroff ◽  
G. Westerhout

Radio studies of galactic HII regions are best carried out at the two ends of the radio spectrum. At high frequencies, of hundreds or thousands of megacycles per second, HII regions are seen by virtue of their thermal emission against a weak nonthermal background. Since radio waves are unaffected by the obscuration along the plane, it is possible in principle to see right through the Galaxy, and the high resolution which can be achieved in the thousands of megacycles range enables us to study at least the nearer regions in considerable detail. At low frequencies, below about 20 Mc/s, ionized hydrogen is seen in absorption against a bright nonthermal background. Since quite tenuous regions may be almost opaque at the lower frequencies, the technique provides quite a sensitive method of detecting them. The absorption increases with decreasing frequency so that studies at different frequencies enable us to see to varying depths along the line of sight and could permit the derivation of rough distance estimates.


2020 ◽  
Vol 499 (1) ◽  
pp. 355-361 ◽  
Author(s):  
Wei-Yang Wang ◽  
Bing Zhang ◽  
Xuelei Chen ◽  
Renxin Xu

ABSTRACT Observations of the Faraday rotation measure, combined with the dispersion measure, can be used to infer the magnetoionic environment of a radio source. We investigate the magnetoionic environments of fast radio bursts (FRBs) by deriving their estimated average magnetic field strengths along the line of sight 〈B∥〉 in their host galaxies and comparing them with those of Galactic pulsars and magnetars. We find that for those FRBs with RM measurements, the mean 〈B∥〉 are $1.77^{+9.01}_{-1.48}\, \rm \mu G$ and $1.74^{+14.82}_{-1.55}\, \rm \mu G$ using two different methods, which is slightly larger but not inconsistent with the distribution of Galactic pulsars, $1.00^{+1.51}_{-0.60}\, \rm \mu G$. Only six Galactic magnetars have estimated 〈B∥〉. Excluding PSR J1745–2900 that has an anomalously high value due to its proximity with the Galactic Centre, the other five sources have a mean value of $1.70\, \rm \mu G$, which is statistically consistent with the 〈B∥〉 distributions of both Galactic pulsars and FRBs. There is no apparent trend of evolution of magnetar 〈B∥〉 as a function of age or surface magnetic field strength. Galactic pulsars and magnetars close to the Galactic Centre have relatively larger 〈B∥〉 values than other pulsars/magnetars. We discuss the implications of these results for the magnetoionic environments of FRB 121102 within the context of magnetar model and the model invoking a supermassive black hole, and for the origin of FRBs in general.


2017 ◽  
Vol 13 (S337) ◽  
pp. 263-266
Author(s):  
S. Chatterjee ◽  
R. S. Wharton ◽  
J. M. Cordes ◽  
G. C. Bower ◽  
B. J. Butler ◽  
...  

AbstractPhased VLA observations of the Galactic center magnetar J1745-2900 over 8-12 GHz reveal rich single pulse behavior. The average profile is comprised of several distinct components and is fairly stable over day timescales and GHz frequencies. The average profile is dominated by the jitter of relatively narrow pulses. The pulses in each of the four profile components are uncorrelated in phase and amplitude, although the occurrence of pulse components 1 and 2 appear to be correlated. Using a collection of the brightest individual pulses, we verify that the index of the dispersion law is consistent with the expected cold plasma value of 2. The scattering time is weakly constrained, but consistent with previous measurements, while the dispersion measure DM = 1763+3−10 pc cm−3 is lower than previous measurements, which could be a result of time variability in the line-of-sight column density or changing pulse profile shape over time or frequency.


2014 ◽  
Vol 10 (S313) ◽  
pp. 95-96 ◽  
Author(s):  
Sara Turriziani ◽  
Martin Hardcastle ◽  
James Miller-Jones ◽  
Jess Broderick ◽  
Sera Markoff ◽  
...  

AbstractWe have been monitoring some well-known bright blazars with short LOFAR observations since February 2013 with fortnightly cadence using the full available bandwidth of the High Band Antennas (i.e., 48 MHz centred at 226 MHz). The sources were chosen to be bright at low frequencies and to exhibit strong GHz-frequency radio variability on timescales of weeks to years. None of the five objects selected have been monitored previously in the MHz band. Here we report some preliminary results on flux variability obtained so far with LOFAR. These observations are scientifically valuable in their own right and also act as a proof of principle for broader, higher-cadence monitoring of the extragalactic sky with LOFAR and possibly SKA.


2012 ◽  
Vol 8 (S291) ◽  
pp. 432-434 ◽  
Author(s):  
Ujjwal Kumar ◽  
Yashwant Gupta ◽  
Willem van Straten ◽  
Stefan Osłowski ◽  
Jayanta Roy ◽  
...  

AbstractWe present the results from nearly three years of monitoring of the variations in dispersion measure (DM) along the line-of-sight to 11 millisecond pulsars using the Giant Metrewave Radio Telescope (GMRT). These results demonstrate accuracies of single epoch DM estimates of the order of 5 × 10−4 cm−3 pc. A preliminary comparison with the Parkes Pulsar Timing Array (PPTA) data shows that the measured DM fluctuations are comparable. We show effects of DM variations due to the solar wind and solar corona and compare with the existing models.


Author(s):  
A. S. Hill

Modern radio spectrometers make measurement of polarized intensity as a function of Faraday depth possible. I investigate the effect of depolarization along a model line of sight. I model sightlines with two components informed by observations: a diffuse interstellar medium with a lognormal electron density distribution and a narrow, denser component simulating a spiral arm or H~{\sc ii} region, all with synchrotron-emitting gas mixed in. I then calculate the polarized intensity from 300-1800 MHz and calculate the resulting Faraday depth spectrum. The idealized synthetic observations show far more Faraday complexity than is observed in Global Magneto-Ionic Medium Survey observations. In a model with a very nearby H~{\sc ii} region observed at low frequencies, most of the effects of a ``depolarization wall'' are evident: the H~{\sc ii} region depolarizes background emission and less (but not zero) information from beyond the H~{\sc ii} region reaches the observer. In other cases, the effects are not so clear, as significant amounts of information reach the observer even through significant depolarization, and it is not clear that low-frequency observations sample largely different volumes of the interstellar medium than high-frequency observations. The observed Faraday depth can be randomized such that it does not always have any correlation with the true Faraday depth.


2020 ◽  
Author(s):  
Aoife Maria Ryan ◽  
Peter T. Gallagher ◽  
Eoin P. Carley ◽  
Diana E. Morosan ◽  
Michiel A. Brentjens ◽  
...  

<p>The solar corona is a highly-structured plasma which reaches temperatures of more than ~2MK. At low radio frequencies (≤ 400 MHz), scattering and refraction of electromagnetic waves are thought to broaden sources to several arcminutes. However, exactly how source size relates to scattering due to turbulence is still subject to investigation. This is mainly due to the lack of high spatial resolution observations of the solar corona at low frequencies. Here, we use the LOw Frequency ARray (LOFAR) to observe the solar corona at 120-180 MHz using baselines of up to ~3.5 km (~1--2’) during a partial solar eclipse of 2015 March 20. We use a lunar de-occultation technique to achieve higher spatial resolution than that attainable via traditional interferometric imaging. This provides a means of studying source sizes in the corona that are smaller than the angular width of the interferometric point spread function. </p>


2019 ◽  
Vol 490 (1) ◽  
pp. 889-908 ◽  
Author(s):  
E J Polzin ◽  
R P Breton ◽  
B W Stappers ◽  
B Bhattacharyya ◽  
G H Janssen ◽  
...  

ABSTRACT In this paper we report on $\sim 10$  yr of observations of PSR J2051$-$0827, at radio frequencies in the range 110–4032 MHz. We investigate the eclipse phenomena of this black widow pulsar using model fits of increased dispersion and scattering of the pulsed radio emission as it traverses the eclipse medium. These model fits reveal variability in dispersion features on time-scales as short as the orbital period, and previously unknown trends on time-scales of months–years. No clear patterns are found between the low-frequency eclipse widths, orbital period variations, and trends in the intrabinary material density. Using polarization calibrated observations we present the first available limits on the strength of magnetic fields within the eclipse region of this system; the average line of sight field is constrained to be $10^{-4}$ G $\lesssim B_{||} \lesssim 10^2$ G, while for the case of a field directed near-perpendicular to the line of sight we find $B_{\perp } \lesssim 0.3$ G. Depolarization of the linearly polarized pulses during the eclipse is detected and attributed to rapid rotation measure fluctuations of $\sigma _{\text{RM}} \gtrsim 100$ rad m$^{-2}$ along, or across, the line of sights averaged over during a subintegration. The results are considered in the context of eclipse mechanisms, and we find scattering and/or cyclotron absorption provide the most promising explanation, while dispersion smearing is conclusively ruled out. Finally, we estimate the mass-loss rate from the companion to be $\dot{M}_{\text{C}} \sim 10^{-12}\, \mathrm{M}_\odot$ yr$^{-1}$, suggesting that the companion will not be fully evaporated on any reasonable time-scale


Sign in / Sign up

Export Citation Format

Share Document