Long-term stellar magnetic field study at the Crimean Astrophysical Observatory

2018 ◽  
Vol 13 (S340) ◽  
pp. 35-38
Author(s):  
Varvara Butkovskaya ◽  
Sergei Plachinda ◽  
Dilyara Baklanova

AbstractThe long-term monitoring of magnetic cycles is a key diagnostic in understanding how dynamo generation and amplification of magnetic fields occur in solar-like stars. One of the current key problems is the establishment of the magnetic field behavior during the activity cycles for stars of different ages and evolutionary statuses. We present the experience of using own long-term datasets for study of activity cycles in selected stars at the Crimean Astrophysical Observatory.

Author(s):  
Yang ◽  
Lu ◽  
Lin ◽  
Li ◽  
Zhang ◽  
...  

Extremely low frequency (ELF) magnetic field (MF) exposure in electric vehicles (EVs) has raised public concern for human health. There have been many studies evaluating magnetic field values in these vehicles. However, there has been no report on the temporal variation of the magnetic field in the cabin . This is the first study on the long-term monitoring of actual MFs in EVs. In the study, we measured the magnetic flux density (B) in three shared vehicles over a period of two years. The measurements were performed at the front and rear seats during acceleration and constant-speed driving modes. We found that the B amplitudes and the spectral components could be modified by replacing the components and the hubs, while regular checks or maintenance did not influence the B values in the vehicle. This observation highlights the necessity of regularly monitoring ELF MF in EVs, especially after major repairs or accidents, to protect car users from potentially excessive ELF MF exposure. These results should be considered in updates of the measurement standards. The ELF MF effect should also be taken into consideration in relevant epidemiological studies.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 360-364
Author(s):  
Rim Fares

AbstractIn Sun-like stars, magnetic fields are generated in the outer convective layers. They shape the stellar environment, from the photosphere to planetary orbits. Studying the large-scale magnetic field of those stars enlightens our understanding of the field properties and gives us observational constraints for field generation dynamo models. It also sheds light on how “normal” the Sun is among Sun-like stars. In this contribution, I will review the field properties of Sun-like stars, focusing on solar twins and planet hosting stars. I will discuss the observed large-scale magnetic cycles, compare them to stellar activity cycles, and link that to what we know about the Sun. I will also discuss the effect of large-scale stellar fields on exoplanets, exoplanetary emissions (e.g. radio), and habitability.


Oryx ◽  
1995 ◽  
Vol 29 (3) ◽  
pp. 205-211 ◽  
Author(s):  
Andrew Grieser Johns ◽  
Bettina Grieser Johns

Over 10 years ago, Oryx published initial details of an investigation into the effects of selective timber logging on primates in the Sungai Tekam Forestry Concession in peninsular Malaysia (Johns, 1983). This original 2-year field study developed into a long-term monitoring programme, in which the recovery of primates in the regenerating forest is to be recorded throughout the logging cycle. This is the only such monitoring programme so far established in the world's tropical forests. The dataset is now complete for forests logged up to 18 years ago.


2020 ◽  
Vol 1 (2) ◽  
pp. 26-36
Author(s):  
Sergei Plachinda ◽  
Varvara Butkovskaya

A research on stellar magnetism in Crimea was initiated by pioneer works of A.B. Severny, V.E. Stepanov, and D.N. Rachkovsky. Today, the study of stellar magnetic fields is a key field of research at the Crimean Astrophysical Observatory (CrAO). The 2.6 m Shajn telescope equipped with the echelle spectrograph ESPL, CCD, and Stokesmeter (a circular polarization analyzer) allows us to study the magnetic field of bright stars up to 5m–6m. The Single Line (SL) technique is developed for measuring magnetic fields at CrAO. This technique is based on the calculation of the Zeeman effect in individual spectral lines. A key advantage of the SL technique is its ability to detect local magnetic fields on the surface of stars. Many results in the field of direct measurements of stellar magnetic fields were obtained at CrAO for the first time. In particular, the magnetic field on supergiants (ǫ Gem), as well as on a number of subgiants, giants, and bright giants was first detected. This, and investigations of other authors, confirmed the hypothesis that a magnetic field is generated at all the stages of evolution of late-type stars, including the stage of star formation. The emergence of large magnetic flux tubes at the surface of stars of V-IV-III luminosity classes (61 Cyg A, β Gem, β Aql) was first registered. In subgiants, the magnetic field behavior with the activity cycle was first established for β Aql. Using the long-term Crimean spectroscopic and spectropolarimetric observations of α Lyr, the 22-year variability cycle of the star, supposedly associated with meridional flows, is confirmed. Magnetic field variability with the pulsation period was first detected for different types of pulsating variables: the classical Cepheid β Aql, the low-amplitude β Cep-type variable γ Peg, and others. In this review we cover more than a half-century history of the formation of the Crimean scientific school for high-precision direct measurements of stellar magnetic fields.


Author(s):  
Anatoly V. Belov ◽  
Raisa T. Gushchina ◽  
Victor Yanke

Recently, there has been a significant trend in magnetic fields on the Sun. The total magnetic field of the Sun from the end of the 22nd cycle of solar activity (SA) has more than halved and this decrease continues. Chan- ges in the magnetic field are the key to all the active phenomena occurring on the Sun and in the heliosphere and, accordingly, to processes in cosmic rays. In long-term CR variations in 23-24 cycles of SA the attenuation of the solar magnetic field is displayed and these variations turned out to be the smallest for the entire time of CR observations. Model calculations of CR modulation for 21-22 and 23-24 cycles of SA showed: with a slight difference in the regression characteristics obtained, the distribution of contributions to the generated CR modulation from the effects of various SA indices is strongly varies in the analyzed periods. Possible reasons for the features of the last two CA cycles are discussed.


2010 ◽  
Vol 6 (S272) ◽  
pp. 222-223
Author(s):  
Ruslan V. Yudin ◽  
Swetlana Hubrig ◽  
Michail A. Pogodin ◽  
Markus Schoeller

AbstractWe report the results of our search for magnetic fields in a representative sample of classical Be stars carried out during 2006-2008 using low-resolution spectropolarimetry with FORS1 at the VLT. Among the 28 classical Be stars studied, detections of a magnetic field were achieved in seven stars (i.e. ~25%). The detected magnetic fields are rather weak, not stronger than ~150G. Among the Be stars studied with time series, one Be star, λ Eri, displays cyclic variability of the magnetic field with a period of 21.12 min.


2019 ◽  
Author(s):  
Josh Javor ◽  
Subramanian Sundaram ◽  
Christopher S. Chen ◽  
David J. Bishop

This work presents a microscale tissue testbed with closed loop mechanical control. The platform leverages a non-contact technique capable of simultaneous actuation and detection, both derived from magnetic fields. We demonstrate cyclic tension and compression of engineered microtissue as well as long-term monitoring of spontaneous beating inside an incubator. The device is capable of positional feedback with high spatial and temporal resolution, while maintaining optical access from a standard microscope. Such a platform will enable experimental design of arbitrary mechanical environments for tissue conditioning, maturation, and monitoring.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


Sign in / Sign up

Export Citation Format

Share Document