scholarly journals Magnetic fields in classical Be stars: results of our long-term program with FORS1 at the VLT

2010 ◽  
Vol 6 (S272) ◽  
pp. 222-223
Author(s):  
Ruslan V. Yudin ◽  
Swetlana Hubrig ◽  
Michail A. Pogodin ◽  
Markus Schoeller

AbstractWe report the results of our search for magnetic fields in a representative sample of classical Be stars carried out during 2006-2008 using low-resolution spectropolarimetry with FORS1 at the VLT. Among the 28 classical Be stars studied, detections of a magnetic field were achieved in seven stars (i.e. ~25%). The detected magnetic fields are rather weak, not stronger than ~150G. Among the Be stars studied with time series, one Be star, λ Eri, displays cyclic variability of the magnetic field with a period of 21.12 min.

2008 ◽  
Vol 4 (S259) ◽  
pp. 397-398 ◽  
Author(s):  
Ruslan Yudin ◽  
S. Hubrig ◽  
M. Pogodin ◽  
I. Savanov ◽  
M. Schöller ◽  
...  

AbstractWe report the results of our study of magnetic fields in a sample of Be stars using spectropolarimetric data obtained at the European Southern Observatory with the multi-mode instrument FORS 1 installed at the 8m Kueyen telescope. The detected magnetic fields are rather weak, not stronger than ~150G. A few classical Be stars display cyclic variability of the magnetic field with periods of tens of minutes.


2018 ◽  
Vol 13 (S340) ◽  
pp. 35-38
Author(s):  
Varvara Butkovskaya ◽  
Sergei Plachinda ◽  
Dilyara Baklanova

AbstractThe long-term monitoring of magnetic cycles is a key diagnostic in understanding how dynamo generation and amplification of magnetic fields occur in solar-like stars. One of the current key problems is the establishment of the magnetic field behavior during the activity cycles for stars of different ages and evolutionary statuses. We present the experience of using own long-term datasets for study of activity cycles in selected stars at the Crimean Astrophysical Observatory.


2014 ◽  
Vol 10 (S305) ◽  
pp. 61-66 ◽  
Author(s):  
Coralie Neiner ◽  
Stéphane Mathis ◽  
Evelyne Alecian ◽  
Constance Emeriau ◽  
Jason Grunhut ◽  
...  

AbstractObservations of stable mainly dipolar magnetic fields at the surface of ~7% of single hot stars indicate that these fields are of fossil origin, i.e. they descend from the seed field in the molecular clouds from which the stars were formed. The recent results confirm this theory. First, theoretical work and numerical simulations confirm that the properties of the observed fields correspond to those expected from fossil fields. They also showed that rapid rotation does not modify the surface dipolar magnetic configurations, but hinders the stability of fossil fields. This explains the lack of correlation between the magnetic field properties and stellar properties in massive stars. It may also explain the lack of detections of magnetic fields in Be stars, which rotate close to their break-up velocity. In addition, observations by the BinaMIcS collaboration of hot stars in binary systems show that the fraction of those hosting detectable magnetic fields is much smaller than for single hot stars. This could be related to results obtained in simulations of massive star formation, which show that the stronger the magnetic field in the original molecular cloud, the more difficult it is to fragment massive cores to form several stars. Therefore, more and more arguments support the fossil field theory.


2000 ◽  
Vol 175 ◽  
pp. 316-323 ◽  
Author(s):  
Gautier Mathys ◽  
Myron A. Smith

AbstractThe results of observations aimed at detecting magnetic fields in the Be star λ Eri are reported. The observational data are analyzed both through application of an approximate analytical method and through computation of a number of simple numerical models in view of deriving constraints on the magnetic fields. General conclusions are drawn about future prospects for magnetic field detections in Be stars.


2008 ◽  
Vol 4 (S259) ◽  
pp. 393-394 ◽  
Author(s):  
Huib F. Henrichs ◽  
C. Neiner ◽  
R. S. Schnerr ◽  
E. Verdugo ◽  
A. Alecian ◽  
...  

AbstractThe slowly pulsating B3V star 16 Pegasi was discovered by Hubrig et al. (2006) to be magnetic, based on low-resolution spectropolarimetric observations with FORS1 at the VLT. We have confirmed the presence of a magnetic field with new measurements with the spectropolarimeters Narval at TBL, France and Espadons at CFHT, Hawaii during 2007. The most likely period is about 1.44 d for the modulation of the field, but this could not be firmly established with the available data set. No variability has been found in the UV stellar wind lines. Although the star was reported once to show Hα in emission, there exists at present no confirmation that the star is a Be star.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


Sign in / Sign up

Export Citation Format

Share Document