Machine Learning for Transient Classification

2017 ◽  
Vol 14 (S339) ◽  
pp. 274-274
Author(s):  
M. Lochner ◽  
B. Bassett

AbstractWe organized Workshop 13, Machine learning for transient classification, into two distinct question-and-answer parts. The first was a so-called ‘idiot session’, in which basic questions about machine learning and artificial intelligence were elicited from the audience. The second focussed discussions on the application of artificial intelligence to transient astronomy.The workshop proved highly successful. The room was packed, and the many interesting questions and discussions were good preparation for the presentation to be made on ‘machine learning’ during the plenary session the following day.The workshop clearly reflected the general awareness and excitement in the community for the potential of machine learning in regard to transient detections in astronomy in the era of ZTF, LSST, LIGO and the SKA. Several of the presentations at this Symposium had already been exhibiting specific attention to the roles of machine-learning techniques and products. The extent to which the younger generations were being involved was clearly noticeable, and that augured well for research into workable solutions for astronomy’s ‘Big Data’ problems which – as stated frequently at this conference – are only just around the corner.

Author(s):  
Bruce Mellado ◽  
Jianhong Wu ◽  
Jude Dzevela Kong ◽  
Nicola Luigi Bragazzi ◽  
Ali Asgary ◽  
...  

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


Author(s):  
Arul Murugan R. ◽  
Sathiyamoorthi V.

Machine learning (ML) is one of the exciting sub-fields of artificial intelligence (AI). The term machine learning is generally stated as the ability to learn without being explicitly programmed. In recent years, machine learning has become one of the thrust areas of research across various business verticals. The technical advancements in the field of big data have provided the ability to gain access over large volumes of diversified data at ease. This massive amount of data can be processed at high speeds in a reasonable amount of time with the help of emerging hardware capabilities. Hence the machine learning algorithms have been the most effective at leveraging all of big data to provide near real-time solutions even for the complex business problems. This chapter aims in giving a solid introduction to various widely adopted machine learning techniques and its applications categorized into supervised, unsupervised, and reinforcement and will serve a simplified guide for the aspiring data and machine learning enthusiasts.


2021 ◽  
Vol 119 ◽  
pp. 44-53
Author(s):  
Danilo Bertoni ◽  
Giacomo Aletti ◽  
Daniele Cavicchioli ◽  
Alessandra Micheletti ◽  
Roberto Pretolani

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Tahani Daghistani ◽  
Huda AlGhamdi ◽  
Riyad Alshammari ◽  
Raed H. AlHazme

AbstractOutpatients who fail to attend their appointments have a negative impact on the healthcare outcome. Thus, healthcare organizations facing new opportunities, one of them is to improve the quality of healthcare. The main challenges is predictive analysis using techniques capable of handle the huge data generated. We propose a big data framework for identifying subject outpatients’ no-show via feature engineering and machine learning (MLlib) in the Spark platform. This study evaluates the performance of five machine learning techniques, using the (2,011,813‬) outpatients’ visits data. Conducting several experiments and using different validation methods, the Gradient Boosting (GB) performed best, resulting in an increase of accuracy and ROC to 79% and 81%, respectively. In addition, we showed that exploring and evaluating the performance of the machine learning models using various evaluation methods is critical as the accuracy of prediction can significantly differ. The aim of this paper is exploring factors that affect no-show rate and can be used to formulate predictions using big data machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document