Stacking analysis of HERITAGE data to statistically study far-IR dust emission from evolved stars

2018 ◽  
Vol 14 (S343) ◽  
pp. 383-384
Author(s):  
Thavisha E. Dharmawardena ◽  
Francisca Kemper ◽  
Sundar Srinivasan ◽  
Sacha Hony ◽  
Olivia Jones ◽  
...  

AbstractWe aim to analyse the co-added Herschel images of various categories of evolved stars in the LMC and SMC from the Herschel HERITAGE survey in order to identify, in a statistical sense, a cool historic dust mass component emitted by these sources. The fluxes derived from the co-added stacks can then be compared with those predicted by the GRAMS model grid in order to refine the DPRs estimated for the SMC and LMC.

2005 ◽  
Vol 13 ◽  
pp. 872-874
Author(s):  
O. Krause ◽  
U. Lisenfeld ◽  
U. Klaas ◽  
D. Lemke ◽  
M. Haas ◽  
...  

AbstractThe bolometric luminosity of LFIR = 2×1012 L⊙ makes ISOSS J 15079+7247 one of the most luminous and unusual galaxies detected by the 170 μm ISOPHOT Serendipity Survey (ISOSS). The detection of CO (1-0) emission identifies a giant elliptical galaxy at redshift z = 0.2136 as the counterpart of the FIR source. The derived high gas mass of 3 × 1010 M⊙ favours the picture that the dust emission is associated with this elliptical galaxy. The ultraluminous IR emission can be explained by a hidden starburst in the center of the elliptical. This is supported by the strength of non-thermal radio continuum emission. The huge dust mass of 5×108 M⊙ corresponds to a visual extinction of AV ~ 1000 mag, being consistent with the non-detection of any signatures of a strong starburst in ISOSS J 15079+7247 in optical spectra.


2019 ◽  
Vol 631 ◽  
pp. A38 ◽  
Author(s):  
S. Lianou ◽  
P. Barmby ◽  
A. A. Mosenkov ◽  
M. Lehnert ◽  
O. Karczewski

Aims. We derived the dust properties for 753 local galaxies and examine how these relate to some of their physical properties. We present the derived dust emission properties, including model spectral energy distribution (SEDs), star formation rates (SFRs) and stellar masses, as well as their relations. Methods. We modelled the global dust-SEDs for 753 galaxies, treated statistically as an ensemble within a hierarchical Bayesian dust-SED modelling approach, so as to derive their infrared (IR) emission properties. To create the observed dust-SEDs, we used a multi-wavelength set of observations, ranging from near-IR to far-IR-to-submillimeter wavelengths. The model-derived properties are the dust masses (Mdust), the average interstellar radiation field intensities (Uav), the mass fraction of very small dust grains (“QPAH” fraction), as well as their standard deviations. In addition, we used mid-IR observations to derive SFR and stellar masses, quantities independent of the dust-SED modelling. Results. We derive distribution functions of the properties for the galaxy ensemble and as a function of galaxy type. The mean value of Mdust for the early-type galaxies (ETGs) is lower than that for the late-type and irregular galaxies (LTGs and Irs, respectively), despite ETGs and LTGs having stellar masses spanning across the whole range observed. The Uav and “QPAH” fraction show no difference among different galaxy types. When fixing Uav to the Galactic value, the derived “QPAH” fraction varies across the Galactic value (0.071). The specific SFR increases with galaxy type, while this is not the case for the dust-specific SFR (SFR/Mdust), showing an almost constant star formation efficiency per galaxy type. The galaxy sample is characterised by a tight relationship between the dust mass and the stellar mass for the LTGs and Irs, while ETGs scatter around this relation and tend towards smaller dust masses. While the relation indicates that Mdust may fundamentally be linked to M⋆, metallicity and Uav are the second parameter driving the scatter, which we investigate in a forthcoming work. We used the extended Kennicutt–Schmidt (KS) law to estimate the gas mass and the gas-to-dust mass ratio (GDR). The gas mass derived from the extended KS law is on average ∼20% higher than that derived from the KS law, and a large standard deviation indicates the importance of the average star formation present to regulate star formation and gas supply. The average GDR for the LTGs and Irs is 370, and including the ETGs gives an average of 550.


2020 ◽  
Vol 493 (1) ◽  
pp. 1277-1291 ◽  
Author(s):  
A Evans ◽  
R D Gehrz ◽  
C E Woodward ◽  
D P K Banerjee ◽  
T R Geballe ◽  
...  

ABSTRACT We present an analysis of the evolution of circumstellar dust and molecules in the environment of the very late thermal pulse object V4334 Sgr (Sakurai’s object) over an ∼20-yr period, drawing on ground-, airborne-, and space-based infrared photometry and spectroscopy. The dust emission, which started in 1997, resembles a blackbody that cooled from ∼1200 K in 1998 August to ∼180 K in 2016 July. The dust mass, assuming amorphous carbon, was ∼5 × 10−10 M⊙ in 1998 August, and we estimate that the total dust mass was ∼2 × 10−5 M⊙ by ∼2016. The appearance of a near-infrared excess in 2008 suggests that a new episode of (or renewed) mass-loss began then. We infer lower limits on the bolometric luminosity of the embedded star from that of the dust shell, which rose to ∼16 000 L⊙ before declining to ∼3000 L⊙. There is evidence for weak 6–7 μm absorption, which we attribute to hydrogenated amorphous carbon formed in material ejected by Sakurai’s object during a mass ejection phase that preceded the 1997 event. We detect small hydrocarbon and other molecules in the spectra, and trace the column densities in hydrogen cyanide (HCN) and acetylene (C2H2). We use the former to determine the 12C/13C ratio to be 6.4 ± 0.7, 14 times smaller than the Solar system value.


2019 ◽  
Vol 491 (4) ◽  
pp. 5073-5082 ◽  
Author(s):  
F Pozzi ◽  
F Calura ◽  
G Zamorani ◽  
I Delvecchio ◽  
C Gruppioni ◽  
...  

ABSTRACT We derive for the first time the dust mass function (DMF) in a wide redshift range, from z ∼ 0.2 up to z ∼ 2.5. In order to trace the dust emission, we start from a far-IR (160-μm) Herschel selected catalogue in the COSMOS field. We estimate the dust masses by fitting the far-IR data (λrest$\,\, \buildrel\gt \over \sim \,\,$50 μm) with a modified black body function and we present a detailed analysis to take into account the incompleteness in dust masses from a far-IR perspective. By parametrizing the observed DMF with a Schechter function in the redshift range 0.1 < z ≤ 0.25, where we are able to sample faint dust masses, we measure a steep slope (α ∼1.48), as found by the majority of works in the Local Universe. We detect a strong dust mass evolution, with $M_{\rm d}^{\star }$ at z ∼ 2.5 almost 1 dex larger than in the local Universe, combined with a decrease in their number density. Integrating our DMFs, we estimate the dust mass density (DMD), finding a broad peak at z ∼ 1, with a decrease by a factor of ∼ 3 towards z ∼ 0 and z ∼ 2.5. In general, the trend found for the DMD mostly agrees with the derivation of Driver et al., another DMD determination based also on far-IR detections, and with other measures based on indirect tracers.


1998 ◽  
Vol 184 ◽  
pp. 303-304
Author(s):  
Kin-Wing Chan ◽  
S. H. Moseley ◽  
S. Casey ◽  
J. P. Harrington ◽  
E. Dwek ◽  
...  

Spectra at 16 - 45 μm of several regions within the central 80″ of the Galaxy have been obtained at 20″ resolution using the Goddard Cryogenic Grating Spectrometer No. 2 on the Kuiper Airborne Observatory. A broad band of excess emission extending from 24 to 45 μm is present in the spectra at positions covering the “tongue” and the inner edge of the circumnuclear disk. A similar dust emission feature has been observed in some carbon-rich evolved stars and in a nitrogen-rich evolved massive star. The observations reported here are the first detection of this dust emission feature in the interstellar medium. After considering several possible candidates of the carrier for this 30 μm dust feature, we find that MgS is the best owing to its good fit to the observed spectra. The origin of this ~ 30 μm feature in the Galactic center is unknown. Based on the theoretical results of dust condensation and elemental abundances in a supernova, we find that the supernovae in the central 500 pc could provide the amount of MgS dust, which we proposed as the carrier of the 30 μm dust feature, observed in the central 3 pc.


2019 ◽  
Vol 488 (1) ◽  
pp. 164-182 ◽  
Author(s):  
I De Looze ◽  
M J Barlow ◽  
R Bandiera ◽  
A Bevan ◽  
M F Bietenholz ◽  
...  

ABSTRACT We have modelled the near-infrared to radio images of the Crab Nebula with a Bayesian SED model to simultaneously fit its synchrotron, interstellar (IS), and supernova dust emission. We infer an IS dust extinction map with an average AV = 1.08 ± 0.38 mag, consistent with a small contribution (${\lesssim }22{{\ \rm per\ cent}}$) to the Crab’s overall infrared emission. The Crab’s supernova dust mass is estimated to be between 0.032 and 0.049 M⊙ (for amorphous carbon grains) with an average dust temperature Tdust = 41 ± 3 K, corresponding to a dust condensation efficiency of 8–12 ${{\ \rm per\ cent}}$. This revised dust mass is up to an order of magnitude lower than some previous estimates, which can be attributed to our different IS dust corrections, lower SPIRE flux densities, and higher dust temperatures than were used in previous studies. The dust within the Crab is predominantly found in dense filaments south of the pulsar, with an average V-band dust extinction of AV = 0.20–0.39 mag, consistent with recent optical dust extinction studies. The modelled synchrotron power-law spectrum is consistent with a radio spectral index αradio = 0.297 ± 0.009 and an infrared spectral index αIR = 0.429 ± 0.021. We have identified a millimetre excess emission in the Crab’s central regions, and argue that it most likely results from two distinct populations of synchrotron emitting particles. We conclude that the Crab’s efficient dust condensation (8–12 ${{\ \rm per\ cent}}$) provides further evidence for a scenario where supernovae can provide substantial contributions to the IS dust budgets in galaxies.


2018 ◽  
Vol 14 (S343) ◽  
pp. 181-185
Author(s):  
Thavisha E. Dharmawardena ◽  
Francisca Kemper ◽  
Peter Scicluna ◽  
Jan G. A. Wouterloot ◽  
Alfonso Trejo ◽  
...  

AbstractWe derive azimuthally-averaged surface-brightness profiles of 16 AGB stars in the far-IR and sub-mm with the aim of studying the resolved historic mass loss in the extended circumstellar envelope. The PSF-subtracted extended component fluxes were found to be ∼40% of the total source flux. By fitting SEDs at each radial point we derive the dust temperature, column density and spectral index of emissivity via Bayesian inference. The measured dust-to-gas ratios were somewhat consistent with canonical values however with a large scatter.


2018 ◽  
Vol 612 ◽  
pp. A81 ◽  
Author(s):  
M. Riener ◽  
C. M. Faesi ◽  
J. Forbrich ◽  
C. J. Lada

Aims. We use multi-band observations by the Herschel Space Observatory to study the dust emission properties of the nearby spiral galaxy NGC 300. We compile a first catalogue of the population of giant dust clouds (GDCs) in NGC 300, including temperature and mass estimates, and give an estimate of the total dust mass of the galaxy. Methods. We carried out source detection with the multiwavelength source extraction algorithm getsources. We calculated physical properties, including mass and temperature, of the GDCs from five-band Herschel PACS and SPIRE observations from 100 to 500 μm; the final size and mass estimates are based on the observations at 250 μm that have an effective spatial resolution of ~170 pc. We correlated our final catalogue of GDCs to pre-existing catalogues of HII regions to infer the number of GDCs associated with high-mass star formation and determined the Hα emission of the GDCs. Results. Our final catalogue of GDCs includes 146 sources, 90 of which are associated with known HII regions. We find that the dust masses of the GDCs are completely dominated by the cold dust component and range from ~1.1 × 103 to 1.4 × 104 M⊙. The GDCs have effective temperatures of ~13–23 K and show a distinct cold dust effective temperature gradient from the centre towards the outer parts of the stellar disk. We find that the population of GDCs in our catalogue constitutes ~16% of the total dust mass of NGC 300, which we estimate to be about 5.4 × 106 M⊙. At least about 87% of our GDCs have a high enough average dust mass surface density to provide sufficient shielding to harbour molecular clouds. We compare our results to previous pointed molecular gas observations in NGC 300 and results from other nearby galaxies and also conclude that it is very likely that most of our GDCs are associated with complexes of giant molecular clouds.


2019 ◽  
Vol 15 (S341) ◽  
pp. 211-215
Author(s):  
Y. Tamura ◽  
K. Mawatari ◽  
T. Hashimoto ◽  
A. K. Inoue ◽  
E. Zackrissonm ◽  
...  

AbstractWe present ALMA detection of the [O iii] 88 μm line and 850 μm dust continuum emission in a Y-dropout Lyman break galaxy, MACS0416_Y1. The [O iii] detection confirms the object with a spectroscopic redshift to be z = 8.3118±0.0003. The 850 μm continuum intensity (0.14 mJy) implies a large dust mass on the order of 4×106M⊙. The ultraviolet-to-far infrared spectral energy distribution modeling, where the [O iii] emissivity model is incorporated, suggests the presence of a young (τage ≍ 4 Myr), star-forming (SFR ≍ 60M⊙yr−1), and moderately metal-polluted (Z ≍ 0.2Z⊙) stellar component with a stellar mass of 3 × 108M⊙. An analytic dust mass evolution model with a single episode of star formation does not reproduce the metallicity and dust mass in ≍ 4 Myr, suggesting an underlying evolved stellar component as the origin of the dust mass.


2020 ◽  
Vol 496 (2) ◽  
pp. 1393-1417 ◽  
Author(s):  
G J Bendo ◽  
N Lu ◽  
A Zijlstra

ABSTRACT We have examined polycyclic aromatic hydrocarbon (PAH) excitation in a sample of 25 nearby face-on spiral galaxies using the ratio of mid-infrared PAH emission to dust mass. Within 11 of the galaxies, we found that the PAH excitation was straightforwardly linked to ultraviolet (UV) or mid-infrared star formation tracers, which, along with other results studying the relation of PAH emission to star formation, indicates that the PAHs are most strongly excited in dusty shells around the star-forming (SF) regions. Within another five galaxies, the PAH emission is enhanced around SF regions only at specific galactocentric radii. In six more galaxies, PAH excitation is more strongly correlated with the evolved stellar populations as traced by 3.6 μm emission. The results for the remaining three galaxies were ambiguous. The radial gradients of the PAH/dust ratios were generally not linked to log(O/H) gradients except when the log(O/H) gradients were relatively steep. Galaxies in which PAHs were excited by evolved stars had relatively high far-UV to mid-infrared ratios, implying that variations in the link between PAH excitation and different stellar populations are connected to changes in dust attenuation within galaxies. Alternately, differences in morphology could make it more likely that PAHs are excited by evolved stars, as five of the six galaxies where this occurs are late-type flocculent spiral galaxies. These heterogeneous results demonstrate the complexity of describing PAH excitation and have broad implications for using PAH emission as a star formation tracer as well as for modelling dust emission and radiative transfer.


Sign in / Sign up

Export Citation Format

Share Document