scholarly journals Magnetic fields and massive star formation

2018 ◽  
Vol 14 (A30) ◽  
pp. 141-141
Author(s):  
Qizhou Zhang

AbstractMassive stars ( ${\rm{M}} > \,8{M_ \odot }$ ) often form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. The role of magnetic fields during the formation of massive dense cores is still not clear. The steady improvement in sensitivity of (sub)millimeter interferometers over the past decade enabled observations of dust polarization of large samples of massive star formation regions. We carried out a polarimetric survey with the Submillimeter Array of 14 massive star forming clumps in continuum emission at a wavelength of 0.89 mm. This unprecedentedly large sample of massive star forming regions observed by a submillimeter interferometer before the advent of ALMA revealed compelling evidence of strong magnetic influence on the gas dynamics from 1 pc to 0.1 pc scales. We found that the magnetic fields in dense cores tend to be either parallel or perpendicular to the mean magnetic fields in their parental molecular clumps. Furthermore, the main axis of protostellar outflows does not appear to be aligned with the mean magnetic fields in the dense core where outflows are launched. These findings suggest that from 1 pc to 0.1 pc scales, magnetic fields are dynamically important in the collapse of clumps and the formation of dense cores. From the dense core scale to the accretion disk scale of ∼102 au, however, gravity and angular momentum appear to be more dominant relative to the magnetic field.


2006 ◽  
Vol 2 (S237) ◽  
pp. 496-496
Author(s):  
S. J. Wolk ◽  
B. D. Spitzbart ◽  
T. L. Bourke

AbstractThe combination of spatial and spectral resolution allow us to use Chandra in the study regions of massive star formation which had been inaccessible even from the ground until the last decade. IRAC and MIPS data from Spitzer can be combined with the X–ray data to provide insight into the presence of a disk and the activity of the star. The total package allows us to better understand the evolution of the clusters. We have an ongoing program to study several young star forming clusters including distant clusters between 1-3 kpc which support O stars, RCW 38, NGC 281 and RCW 108 and well as clusters within a kpc including IRAS 20050+2720 and NGC 1579, which is a small cluster centered on the Be star LkHα101 and is of uncertain distance although the X-ray data help us refine the current distance estimates. Given the space constraints we only discuss RCW 108 below.



2018 ◽  
Vol 14 (A30) ◽  
pp. 118-118
Author(s):  
Fatemeh S. Tabatabaei ◽  
M. Almudena Prieto ◽  
Juan A. Fernández-Ontiveros

AbstractThe role of the magnetic fields in the formation and quenching of stars with different mass is unknown. We studied the energy balance and the star formation efficiency in a sample of molecular clouds in the central kpc region of NGC 1097, known to be highly magnetized. Combining the full polarization VLA/radio continuum observations with the HST/Hα, Paα and the SMA/CO lines observations, we separated the thermal and non-thermal synchrotron emission and compared the magnetic, turbulent, and thermal pressures. Most of the molecular clouds are magnetically supported against gravitational collapse needed to form cores of massive stars. The massive star formation efficiency of the clouds also drops with the magnetic field strength, while it is uncorrelated with turbulence (Tabatabaei et al. 2018). The inefficiency of the massive star formation and the low-mass stellar population in the center of NGC 1097 can be explained in the following steps: I) Magnetic fields supporting the molecular clouds prevent the collapse of gas to densities needed to form massive stars. II) These clouds can then be fragmented into smaller pieces due to e.g., stellar feedback, non-linear perturbations and instabilities leading to local, small-scale diffusion of the magnetic fields. III) Self-gravity overcomes and the smaller clouds seed the cores of the low-mass stars.



2020 ◽  
Vol 496 (3) ◽  
pp. 2790-2820 ◽  
Author(s):  
Tie Liu ◽  
Neal J Evans ◽  
Kee-Tae Kim ◽  
Paul F Goldsmith ◽  
Sheng-Yuan Liu ◽  
...  

ABSTRACT The ATOMS, standing for ALMA Three-millimeter Observations of Massive Star-forming regions, survey has observed 146 active star-forming regions with ALMA band 3, aiming to systematically investigate the spatial distribution of various dense gas tracers in a large sample of Galactic massive clumps, to study the roles of stellar feedback in star formation, and to characterize filamentary structures inside massive clumps. In this work, the observations, data analysis, and example science of the ATOMS survey are presented, using a case study for the G9.62+0.19 complex. Toward this source, some transitions, commonly assumed to trace dense gas, including CS J = 2−1, HCO+J = 1−0, and HCN J = 1−0, are found to show extended gas emission in low-density regions within the clump; less than 25 per cent of their emission is from dense cores. SO, CH3OH, H13CN, and HC3N show similar morphologies in their spatial distributions and reveal well the dense cores. Widespread narrow SiO emission is present (over ∼1 pc), which may be caused by slow shocks from large–scale colliding flows or H ii regions. Stellar feedback from an expanding H ii region has greatly reshaped the natal clump, significantly changed the spatial distribution of gas, and may also account for the sequential high-mass star formation in the G9.62+0.19 complex. The ATOMS survey data can be jointly analysed with other survey data, e.g. MALT90, Orion B, EMPIRE, ALMA_IMF, and ALMAGAL, to deepen our understandings of ‘dense gas’ star formation scaling relations and massive protocluster formation.



2017 ◽  
Vol 12 (S330) ◽  
pp. 341-342
Author(s):  
Delphine Russeil

AbstractThe star forming regions NGC6334 and NGC6357 are amid the most active star-forming complexes of our Galaxy where massive star formation is occuring. Both complexes gather several HII regions but they exhibit different aspects: NGC6334 is characterised by a dense molecular ridge where recent massive star formation is obvious while NGC6357 is dominated by the action of the stellar cluster Pismis 24 which have shaped a large cavity. To understand and compare the formation of massive stars in these two regions requires to precise the distance and characterise the proper motions of the O to B3 stellar population in these regions.



1987 ◽  
Vol 115 ◽  
pp. 178-178
Author(s):  
N. Ukita ◽  
T. Hasegawa ◽  
N. Kaifu ◽  
K.-I. Morita ◽  
S. Okumura ◽  
...  

The maser emission of the J = 1-0 lines of SiO in vibrationally excited states has been detected in two regions of massive star formation, W51 IRS2 and Sgr B2 MD5. The SiO masers apparently coincide with strong H2O masers in each source within the uncertainties of < 5″. Their velocity ranges fall within those of the nearest H2O masers (Figure 1). In W51 IRS2 the maser emission is observed only in the v = 2 state, and the upper limit of the v = 1 line (3σ) is 1/15th of the v = 2 line intensity. The v = 1 emission found in Sgr B2 MD5 is five times stronger than the marginally detected v = 2 emission (Figure 2). Their luminosities are comparable to those from the corresponding maser in Orion.



Galaxies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 13 ◽  
Author(s):  
Claus Leitherer

Spectroscopic observations of a massive star formation in the ultraviolet and their interpretation are reviewed. After a brief historical retrospective, two well-studied resolved star clusters and the surrounding H II regions are introduced: NGC 2070 in the Large Magellanic Cloud and NGC 604 in M33. These regions serve as a training set for studies of more distant clusters, which can no longer be resolved into individual stars. Observations of recently formed star clusters and extended regions in star-forming galaxies in the nearby universe beyond the Local Group are presented. Their interpretation relies on spectral synthesis models. The successes and failures of such models are discussed, and future directions are highlighted. I present a case study of the extraordinary star cluster and giant H II region in the blue compact galaxy II Zw 40. The review concludes with a preview of two upcoming Hubble Space Telescope programs: ULLYSES, a survey of massive stars in nearby galaxies, and CLASSY, a study of massive star clusters in star-forming galaxies.



2019 ◽  
Vol 625 ◽  
pp. A134 ◽  
Author(s):  
D. Russeil ◽  
M. Figueira ◽  
A. Zavagno ◽  
F. Motte ◽  
N. Schneider ◽  
...  

Aims. To constrain models of high-mass star formation it is important to identify the massive dense cores (MDCs) that are able to form high-mass star(s). This is one of the purposes of the Herschel/HOBYS key programme. Here, we carry out the census and characterise of the properties of the MDCs population of the NGC 6357 H II region. Methods. Our study is based on the Herschel/PACS and SPIRE 70−500 μm images of NGC 6357 complemented with (sub-)millimetre and mid-infrared data. We followed the procedure established by the Herschel/HOBYS consortium to extract ~0.1 pc massive dense cores using the getsources software. We estimated their physical parameters (temperatures, masses, luminosities) from spectral energy distribution (SED) fitting. Results. We obtain a complete census of 23 massive dense cores, amongst which one is found to be IR-quiet and twelve are starless, representing very early stages of the star-formation process. Focussing on the starless MDCs, we have considered their evolutionary status, and suggest that only five of them are likely to form a high-mass star. Conclusions. We find that, contrarily to the case in NGC 6334, the NGC 6357 region does not exhibit any ridge or hub features that are believed to be crucial to the massive star formation process. This study adds support for an empirical model in which massive dense cores and protostars simultaneously accrete mass from the surrounding filaments. In addition, the massive star formation in NGC 6357 seems to have stopped and the hottest stars in Pismis 24 have disrupted the filaments.



2006 ◽  
Vol 2 (S237) ◽  
pp. 155-159
Author(s):  
Michael A. Reid ◽  
Brenda C. Matthews

AbstractWe present new BIMA observations of the massive star-forming region IRAS 23033+5951 in Cepheus. 3 mm continuum observations reveal that the source decomposes into at least three dusty clumps, each of which has sufficient mass to form a massive star. The most massive clump has a mass of about 225 M and appears to house the massive protostar which drives the prominent CO outflow seen in the region. Our H13CN, 1-0, N2H+ 1-0, and H13CO+ 1-0 maps show that the three continuum sources are all embedded in an elongated structure whose long axis is perpendicular to the outflow. Both H13CO+ and H13CN peak at the geometric center of this structure, which lies between the two prominent continuum peaks. All three lines – H13CN, H13CO+, and N2H+ –show the same velocity gradient along the long axis of their integrated intensity maps. Although the approximately 90,000 AU length of the elongated structure prohibits a disk interpretation, the fact that the dynamical and gas masses of the structure differ by only a factor of a few suggests that the structure may be partially rotationally supported. We also detect a signature of infall toward the center of the structure, seen as an asymmetrically blue HCO+ line where its optically thin isotope, H13CO+, is symmetric and single-peaked.





2006 ◽  
Vol 2 (S237) ◽  
pp. 40-46
Author(s):  
Mónica Rubio

AbstractMultiwavelengths studies of massive star formation regions in the LMC and SMC reveal that a second generation of stars is being formed in dense molecular clouds located in the surroundings of the massive clusters. These dense molecular clouds have survived the action of massive star UV radiation fields and winds and they appear as compact dense H2 knots in regions of weak CO emission. Alternatively, we have found that large molecular clouds, probably remnants of the parental giant molecular clouds where the first generation of stars were formed, are suffering the interaction of the winds and UV radiation field in their surfaces in the direction of the central massive cluster or massive stars. These molecular regions show 1.2 mm continuum emission form cold dust and they show embedded IR sources as determined from deep ground base JHKs imaging. The distribution of young IR sources as determined from their Mid IR colors obtained by SPITZER concentrate in the maxima of CO and dust emission. IR spectroscopy of the embedded sources with high IR excess confirm their nature as massive young stellar objects (MYSO's). Our results are suggestive of contagious star formation where triggering and induced star formation could be taking place.



Sign in / Sign up

Export Citation Format

Share Document