Structure and evolution of metallicity and age radial profiles in Milky-Way-like galaxies

2018 ◽  
Vol 14 (A30) ◽  
pp. 284-284
Author(s):  
E. Athanassoula

AbstractI will give here a very short summary of some of the work I have been doing lately on the chemical evolution in Milky-Way-like spiral galaxies.

2006 ◽  
Vol 2 (S235) ◽  
pp. 313-313
Author(s):  
J. Yin ◽  
J.L. Hou ◽  
R.X. Chang ◽  
S. Boissier ◽  
N. Prantzos

Andromeda galaxy (M31,NGC224) is the biggest spiral in the Local Group. By studying the star formation history(SFH) and chemical evolution of M31, and comparing with the Milky Way Galaxy, we are able to understand more about the formation and evolution of spiral galaxies.


2009 ◽  
Vol 5 (S265) ◽  
pp. 317-324 ◽  
Author(s):  
Walter J. Maciel ◽  
Roberto D. D. Costa

AbstractRadial metallicity gradients are observed in the disks of the Milky Way and in several other spiral galaxies. In the case of the Milky Way, many objects can be used to determine the gradients, such as HII regions, B stars, Cepheids, open clusters and planetary nebulae. Several elements can be studied, such as oxygen, sulphur, neon, and argon in photoionized nebulae, and iron and other elements in cepheids, open clusters and stars. As a consequence, the number of observational characteristics inferred from the study of abundance gradients is very large, so that in the past few years they have become one of the main observational constraints of chemical evolution models. In this paper, we present some recent observational evidences of abundance gradients based on several classes of objects. We will focus on (i) the magnitude of the gradients, (ii) the space variations, and (iii) the evidences of a time variation of the abundance gradients. Some comments on recent theoretical models are also given, in an effort to highlight their predictions concerning abundance gradients and their variations.


Author(s):  
Geoff G Murphy ◽  
Robert M Yates ◽  
Shazrene S Mohamed

Abstract We present an analysis of the formation and chemical evolution of stellar haloes around (a) Milky Way Analogue (MWA) galaxies and (b) galaxy clusters in the L-Galaxies 2020 semi-analytic model of galaxy evolution. Observed stellar halo properties are better reproduced when assuming a gradual stripping model for the removal of cold gas and stars from satellites, compared to an instantaneous stripping model. The slope of the stellar mass – metallicity relation for MWA stellar haloes is in good agreement with that observed in the local Universe. This extends the good agreement between L-Galaxies 2020 and metallicity observations from the gas and stars inside galaxies to those outside. Halo stars contribute on average only ∼0.1 per cent of the total circumgalactic medium (CGM) enrichment by z = 0 in MWAs, ejecting predominantly carbon produced by AGB stars. Around a quarter of MWAs have a single ‘significant progenitor’ with a mean mass of ∼ 2.3 × 109M⊙, similar to that measured for Gaia Enceladus. For galaxy clusters, L-Galaxies 2020 shows good correspondence with observations of stellar halo mass fractions, but slightly over-predicts stellar masses. Assuming a Navarro-Frenk-White profile for the stellar halo mass distribution provides the best agreement. On average, the intracluster stellar component (ICS) is responsible for 5.4 per cent of the total intracluster medium (ICM) iron enrichment, exceeding the contribution from the brightest cluster galaxy (BCG) by z = 0. We find that considering gradual stripping of satellites and realistic radial profiles is crucial for accurately modelling stellar halo formation on all scales in semi-analytic models.


2018 ◽  
Vol 619 ◽  
pp. A143 ◽  
Author(s):  
G. Guiglion ◽  
P. de Laverny ◽  
A. Recio-Blanco ◽  
N. Prantzos

Context. The chemical evolution of neutron capture elements in the Milky Way disc is still a matter of debate. There is a lack of statistically significant catalogues of such element abundances, especially those of the r-process. Aims. We aim to understand the chemical evolution of r-process elements in Milky Way disc. We focus on three pure r-process elements Eu, Gd, and Dy. We also consider a pure s-process element, Ba, in order to disentangle the different nucleosynthesis processes. Methods. We take advantage of high-resolution FEROS, HARPS, and UVES spectra from the ESO archive in order to perform a homogeneous analysis on 6500 FGK Milky Way stars. The chemical analysis is performed thanks to the automatic optimization pipeline GAUGUIN. We present abundances of Ba (5057 stars), Eu (6268 stars), Gd (5431 stars), and Dy (5479 stars). Based on the [α/Fe] ratio determined previously by the AMBRE Project, we chemically characterize the thin and the thick discs, and a metal-rich α-rich population. Results. First, we find that the [Eu/Fe] ratio follows a continuous sequence from the thin disc to the thick disc as a function of the metallicity. Second, in thick disc stars, the [Eu/Ba] ratio is found to be constant, while the [Gd/Ba] and [Dy/Ba] ratios decrease as a function of the metallicity. These observations clearly indicate a different nucleosynthesis history in the thick disc between Eu and Gd–Dy. The [r/Fe] ratio in the thin disc is roughly around +0.1 dex at solar metallicity, which is not the case for Ba. We also find that the α-rich metal-rich stars are also enriched in r-process elements (like thick disc stars), but their [Ba/Fe] is very different from thick disc stars. Finally, we find that the [r/α] ratio tends to decrease with metallicity, indicating that supernovae of different properties probably contribute differently to the synthesis of r-process elements and α-elements. Conclusions. We provide average abundance trends for [Ba/Fe] and [Eu/Fe] with rather small dispersions, and for the first time for [Gd/Fe] and [Dy/Fe]. This data may help to constrain chemical evolution models of Milky Way r- and s-process elements and the yields of massive stars. We emphasize that including yields of neutron-star or black hole mergers is now crucial if we want to quantitatively compare observations to Galactic chemical evolution models.


2021 ◽  
Vol 503 (3) ◽  
pp. 3216-3231
Author(s):  
Marco Palla

ABSTRACT We study the effect of different Type Ia SN nucleosynthesis prescriptions on the Milky Way chemical evolution. To this aim, we run detailed one-infall and two-infall chemical evolution models, adopting a large compilation of yield sets corresponding to different white dwarf progenitors (near-Chandrasekar and sub-Chandrasekar) taken from the literature. We adopt a fixed delay time distribution function for Type Ia SNe, in order to avoid degeneracies in the analysis of the different nucleosynthesis channels. We also combine yields for different Type Ia SN progenitors in order to test the contribution to chemical evolution of different Type Ia SN channels. The results of the models are compared with recent LTE and NLTE observational data. We find that ‘classical’ W7 and WDD2 models produce Fe masses and [α/Fe] abundance patterns similar to more recent and physical near-Chandrasekar and sub-Chandrasekar models. For Fe-peak elements, we find that the results strongly depend either on the white dwarf explosion mechanism (deflagration-to-detonation, pure deflagration, double detonation) or on the initial white dwarf conditions (central density, explosion pattern). The comparison of chemical evolution model results with observations suggests that a combination of near-Chandrasekar and sub-Chandrasekar yields is necessary to reproduce the data of V, Cr, Mn and Ni, with different fractions depending on the adopted massive stars stellar yields. This comparison also suggests that NLTE and singly ionized abundances should be definitely preferred when dealing with most of Fe-peak elements at low metallicity.


2004 ◽  
Vol 614 (1) ◽  
pp. 158-166 ◽  
Author(s):  
David Burstein ◽  
Yong Li ◽  
Kenneth C. Freeman ◽  
John E. Norris ◽  
Michael S. Bessell ◽  
...  

2017 ◽  
Vol 13 (S334) ◽  
pp. 298-299 ◽  
Author(s):  
Francesca Matteucci ◽  
Emanuele Spitoni ◽  
Valeria Grisoni

AbstractWe discuss some important topics concerning the chemical evolution of the Milky Way. In particular, we compare the predictions of theoretical chemical models for our Galaxy with the latest observational data in order to derive constraint on the formation and evolution of the various Galactic components.


2015 ◽  
Vol 11 (S317) ◽  
pp. 344-345 ◽  
Author(s):  
Michael G. Richer ◽  
Marshall L. McCall

AbstractThe populations of bright planetary nebulae in the discs of spirals appear to differ in their spectral properties from those in ellipticals and the bulges of spirals. The bright planetary nebulae from the bulge of the Milky Way are entirely compatible with those observed in the discs of spiral galaxies. The similarity might be explained if the bulge of the Milky Way evolved secularly from the disc, in which case the bulge should be regarded as a pseudo-bulge.


2017 ◽  
Vol 467 (4) ◽  
pp. 4282-4292 ◽  
Author(s):  
Angus Mok ◽  
C. D. Wilson ◽  
J. H. Knapen ◽  
J. R. Sánchez-Gallego ◽  
E. Brinks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document