Modeling the panchromatic emission of galaxies with CIGALE

2019 ◽  
Vol 15 (S341) ◽  
pp. 129-133
Author(s):  
M. Boquien ◽  
D. Burgarella ◽  
Y. Roehlly ◽  
V. Buat ◽  
L. Ciesla ◽  
...  

AbstractPanchromatic modeling is one of the most powerful tools at our disposal to measure reliably the physical properties of galaxies across cosmic times. We present here an entirely new implementation in python of one such tool: CIGALE. Developed along three main design principles: simplicity, modularity, and efficiency, it has proven to be a versatile code that in addition to estimating the physical properties of galaxies (or regions within galaxies), can generate arbitrary sets of theoretical models or be used as a library to build other tools. Among its defining features, it is a truly panchromatic code ranging from the far-ultraviolet to the radio that takes into account numerous physical components (including active nuclei or synchrotron emission), that can fit non-photometric data, handle upper limits, determine photometric redshifts, and even build mock catalogs.

2020 ◽  
Vol 499 (4) ◽  
pp. 5749-5764 ◽  
Author(s):  
Xihan Ji ◽  
Renbin Yan

ABSTRACT Optical diagnostic diagrams are powerful tools to separate different ionizing sources in galaxies. However, the model-constraining power of the most widely used diagrams is very limited and challenging to visualize. In addition, there have always been classification inconsistencies between diagrams based on different line ratios, and ambiguities between regions purely ionized by active galactic nuclei (AGNs) and composite regions. We present a simple reprojection of the 3D line ratio space composed of [N ii]λ6583/H α, [S ii]λλ6716, 6731/H α, and [O iii]λ5007/H β, which reveals its model-constraining power and removes the ambiguity for the true composite objects. It highlights the discrepancy between many theoretical models and the data loci. With this reprojection, we can put strong constraints on the photoionization models and the secondary nitrogen abundance prescription. We find that a single nitrogen prescription cannot fit both the star-forming locus and AGN locus simultaneously, with the latter requiring higher N/O ratios. The true composite regions stand separately from both models. We can compute the fractional AGN contributions for the composite regions, and define demarcations with specific upper limits on contamination from AGN or star formation. When the discrepancy about nitrogen prescriptions gets resolved in the future, it would also be possible to make robust metallicity measurements for composite regions and AGNs.


2021 ◽  
Vol 7 (6) ◽  
pp. eaba2458
Author(s):  
Weier Bao ◽  
Falin Tian ◽  
Chengliang Lyu ◽  
Bin Liu ◽  
Bin Li ◽  
...  

The poor understanding of the complex multistep process taken by nanocarriers during the delivery process limits the delivery efficiencies and further hinders the translation of these systems into medicine. Here, we describe a series of six self-assembled nanocarrier types with systematically altered physical properties including size, shape, and rigidity, as well as both in vitro and in vivo analyses of their performance in blood circulation, tumor penetration, cancer cell uptake, and anticancer efficacy. We also developed both data and simulation-based models for understanding the influence of physical properties, both individually and considered together, on each delivery step and overall delivery process. Thus, beyond finding that nanocarriers that are simultaneously endowed with tubular shape, short length, and low rigidity outperformed the other types, we now have a suit of theoretical models that can predict how nanocarrier properties will individually and collectively perform in the multistep delivery of anticancer therapies.


2018 ◽  
Vol 618 ◽  
pp. A27 ◽  
Author(s):  
M. C. Powell ◽  
B. Husemann ◽  
G. R. Tremblay ◽  
M. Krumpe ◽  
T. Urrutia ◽  
...  

Aims. We probe the radiatively-efficient, hot wind feedback mode in two nearby luminous unobscured (type 1) AGN from the Close AGN Reference Survey (CARS), which show intriguing kpc-scale arc-like features of extended [O III]ionized gas as mapped with VLT-MUSE. We aimed to detect hot gas bubbles that would indicate the existence of powerful, galaxy-scale outflows in our targets, HE 0227–0931 and HE 0351+0240, from deep (200 ks) Chandra observations. Methods. By measuring the spatial and spectral properties of the extended X-ray emission and comparing with the sub kpc-scale IFU data, we are able to constrain feedback scenarios and directly test if the ionized gas is due to a shocked wind. Results. No extended hot gas emission on kpc-scales was detected. Unless the ambient medium density is low (n H  ∼  1 cm−3 at 100 pc), the inferred upper limits on the extended X-ray luminosities are well below what is expected from theoretical models at matching AGN luminosities. Conclusions. We conclude that the highly-ionized gas structures on kpc scales are not inflated by a hot outflow in either target, and instead are likely caused by photoionization of pre-existing gas streams of different origins. Our nondetections suggest that extended X-ray emission from an AGN-driven wind is not universal, and may lead to conflicts with current theoretical predictions.


2011 ◽  
Vol 94-96 ◽  
pp. 342-349
Author(s):  
Wen Long Shi ◽  
Xuan Liu

The H-beam with corrugated webs is a new type of H-beam, whose webs are produced by substituting corrugated webs for flat webs. In this paper, analysis was conducted to study main design principles for H-beam with corrugated webs used in a project, including component design and joints design. Compared with H-beams, the products have superior load-carrying capacity and more favorable economic advantages.


Icarus ◽  
2014 ◽  
Vol 233 ◽  
pp. 106-113 ◽  
Author(s):  
Paul D. Feldman ◽  
David A. Glenar ◽  
Timothy J. Stubbs ◽  
Kurt D. Retherford ◽  
G. Randall Gladstone ◽  
...  

2020 ◽  
Vol 642 ◽  
pp. A102 ◽  
Author(s):  
P. Tarrío ◽  
S. Zarattini

We present a robust approach to estimating the redshift of galaxies using Pan-STARRS1 photometric data. Our approach is an application of the algorithm proposed for the SDSS Data Release 12. It uses a training set of 2 313 724 galaxies for which the spectroscopic redshift is obtained from SDSS, and magnitudes and colours are obtained from the Pan-STARRS1 Data Release 2 survey. The photometric redshift of a galaxy is then estimated by means of a local linear regression in a 5D magnitude and colour space. Our approach achieves an average bias of Δ̅z̅n̅o̅r̅m̅ = −1.92 × 10−4, a standard deviation of σ(Δznorm) = 0.0299, and an outlier rate of Po = 4.30% when cross-validating the training set. Even though the relation between each of the Pan-STARRS1 colours and the spectroscopic redshifts is noisier than for SDSS colours, the results obtained by our approach are very close to those yielded by SDSS data. The proposed approach has the additional advantage of allowing the estimation of photometric redshifts on a larger portion of the sky (∼3/4 vs ∼1/3). The training set and the code implementing this approach are publicly available at the project website.


2021 ◽  
Vol 922 (1) ◽  
pp. 71
Author(s):  
R. Abbott ◽  
T. D. Abbott ◽  
S. Abraham ◽  
F. Acernese ◽  
K. Ackley ◽  
...  

Abstract We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537–6910 using data from the LIGO–Virgo Collaboration observing run O3. PSR J0537–6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role in the spin evolution of this pulsar. Theoretical models confirm this possibility and predict emission at a level that can be probed by ground-based detectors. In order to explore this scenario, we search for r-mode emission in the epochs between glitches by using a contemporaneous timing ephemeris obtained from NICER data. We do not detect any signals in the theoretically expected band of 86–97 Hz, and report upper limits on the amplitude of the gravitational waves. Our results improve on previous amplitude upper limits from r-modes in J0537-6910 by a factor of up to 3 and place stringent constraints on theoretical models for r-mode-driven spin-down in PSR J0537–6910, especially for higher frequencies at which our results reach below the spin-down limit defined by energy conservation.


2019 ◽  
Vol 623 ◽  
pp. A48 ◽  
Author(s):  
G. Castignani ◽  
F. Combes ◽  
P. Salomé ◽  
C. Benoist ◽  
M. Chiaberge ◽  
...  

Context. Low luminosity radio galaxies (LLRGs) typically reside in dense megaparsec-scale environments and are often associated with brightest cluster galaxies (BCGs). They are an excellent tool to study the evolution of molecular gas reservoirs in giant ellipticals, even close to the active galactic nucleus. Aims. We investigate the role of dense megaparsec-scale environment in processing molecular gas in LLRGs in the cores of galaxy (proto-)clusters. To this aim we selected within the COSMOS and DES surveys a sample of five LLRGs at z = 0.4−2.6 that show evidence of ongoing star formation on the basis of their far-infrared (FIR) emission. Methods. We assembled and modeled the FIR-to-UV spectral energy distributions (SEDs) of the five radio sources to characterize their host galaxies in terms of stellar mass and star formation rate. We observed the LLRGs with the IRAM-30 m telescope to search for CO emission. We then searched for dense megaparsec-scale overdensities associated with the LLRGs using photometric redshifts of galaxies and the Poisson Probability Method, which we have upgraded using an approach based on the wavelet-transform (wPPM), to ultimately characterize the overdensity in the projected space and estimate the radio galaxy miscentering. Color-color and color-magnitude plots were then derived for the fiducial cluster members, selected using photometric redshifts. Results. Our IRAM-30 m observations yielded upper limits to the CO emission of the LLRGs, at z = 0.39, 0.61, 0.91, 0.97, and 2.6. For the most distant radio source, COSMOS-FRI 70 at z = 2.6, a hint of CO(7→6) emission is found at 2.2σ. The upper limits found for the molecular gas content M(H2)/M⋆ <  0.11, 0.09, 1.8, 1.5, and 0.29, respectively, and depletion time τdep ≲ (0.2−7) Gyr of the five LLRGs are overall consistent with the corresponding values of main sequence field galaxies. Our SED modeling implies large stellar-mass estimates in the range log(M⋆/M⊙) = 10.9−11.5, typical for giant ellipticals. Both our wPPM analysis and the cross-matching of the LLRGs with existing cluster/group catalogs suggest that the megaparsec-scale overdensities around our LLRGs are rich (≲1014 M⊙) groups and show a complex morphology. The color-color and color-magnitude plots suggest that the LLRGs are consistent with being star forming and on the high-luminosity tail of the red sequence. The present study thus increases the still limited statistics of distant cluster core galaxies with CO observations. Conclusions. The radio galaxies of this work are excellent targets for ALMA as well as next-generation telescopes such as the James Webb Space Telescope.


2011 ◽  
Vol 338 ◽  
pp. 8-12
Author(s):  
Yong Wang ◽  
Wen Jiao Ding ◽  
Xiao Meng Xu

Painting education is one of the main intellectual development forms for early childhood, and the valuable experience in children healthy growth. This paper analyses the demand and psychophysical characteristics of 3-12 years old children, and proposes the design basis of children electronic painting tools. The main design points of children painting tools are summarized by means of integrating the design principles, which include production interestingness, function promotion, man-machine interactivity and handleability. Aim at satisfy the design idea for children painting tools, a series of innovation designs is developed in several acpects such as shape, color, function, use pattern and man-machine interaction.


Sign in / Sign up

Export Citation Format

Share Document