scholarly journals Effect of heat stress and feeding phosphorus levels on pig electron transport chain gene expression

animal ◽  
2013 ◽  
Vol 7 (12) ◽  
pp. 1985-1993 ◽  
Author(s):  
M.M.D.C.A. Weller ◽  
L. Alebrante ◽  
P.H.R.F. Campos ◽  
A. Saraiva ◽  
B.A.N. Silva ◽  
...  
2020 ◽  
Vol 7 ◽  
Author(s):  
Hari Prasad Osuru ◽  
Umadevi Paila ◽  
Keita Ikeda ◽  
Zhiyi Zuo ◽  
Robert H. Thiele

Background: Hepatic dysfunction plays a major role in adverse outcomes in sepsis. Volatile anesthetic agents may protect against organ dysfunction in the setting of critical illness and infection. The goal of this study was to study the impact of Sepsis-inflammation on hepatic subcellular energetics in animals anesthetized with both Propofol (intravenous anesthetic agent and GABA agonist) and Isoflurane (volatile anesthetic i.e., VAA).Methods: Sprague-Dawley rats were anesthetized with Propofol or isoflurane. Rats in each group were randomized to celiotomy and closure (control) or cecal ligation and puncture “CLP” (Sepsis-inflammation) for 8 h.Results: Inflammation led to upregulation in hepatic hypoxia-inducible factor-1 in both groups. Rats anesthetized with isoflurane also exhibited increases in bcl-2, inducible nitric oxide synthase, and heme oxygenase-1(HO-1) during inflammation, whereas rats anesthetized with Propofol did not. In rats anesthetized with isoflurane, decreased mRNA, protein (Complex II, IV, V), and activity levels (Complex II/III,IV,V) were identified for all components of the electron transport chain, leading to a decrease in mitochondrial ATP. In contrast, in rats anesthetized with Propofol, these changes were not identified after exposure to inflammation. RNA-Seq and real-time quantitative PCR (qPCR) expression analysis identified a substantial difference between groups (isoflurane vs. Propofol) in mitogen-activated protein kinase (MAPK) related gene expression following exposure to Sepsis-inflammation.Conclusions: Compared to rats anesthetized with Propofol, those anesthetized with isoflurane exhibit more oxidative stress, decreased oxidative phosphorylation protein expression, and electron transport chain activity and increased expression of organ-protective proteins.


2005 ◽  
Vol 99 (3) ◽  
pp. 1120-1126 ◽  
Author(s):  
Leigh Ann Callahan ◽  
Gerald S. Supinski

Cellular energy metabolism is altered in sepsis as a consequence of dysfunction of mitochondrial electron transport and glycolytic pathways. The purpose of the present study was to determine whether sepsis is associated with compensatory increases in gene expression of electron transport chain and glycolytic pathway proteins or, alternatively, whether gene expression decreases in sepsis, contributing to abnormalities in energy metabolism. Studies were performed using diaphragms from control and endotoxin-treated (8 mg·kg−1·day−1) rats; at 48 h after endotoxin administration, animals were killed. Microarrays and RNAse protection assays were used to assess the expression of several electron transport chain components (cytochrome- c oxidase subunits Cox 5A, Cox 5B, and Cox 6A, ATP synthase, and ATP synthase subunit 5B) and of the rate-limiting enzyme for glycolysis, phosphofructokinase (PFK). Western blotting was used to assess protein levels for these electron transport chain subunits and PFK. Activity assays were used to assess electron transport chain and phosphofructokinase function. We found that sepsis evoked 1) a downregulation of genes encoding all examined electron transport chain components (e.g., cytochrome- c oxidase 5A decreased 45 + 7%, P < 0.01) and PFK ( P < 0.001), 2) reductions in protein levels for these electron transport chain subunits and PFK ( P < 0.05 for each), and 3) decreases in mitochondrial state 3 respiration rates and phosphofructokinase enzyme activity ( P < 0.01 for each comparison). We speculate that these sepsis-induced reductions in the expression of genes encoding critical electron transport and glycolytic proteins contribute to the development and persistence of sepsis-induced abnormalities in cellular energy metabolism.


Sign in / Sign up

Export Citation Format

Share Document