A compact rhombus-shaped slot antenna fed by microstrip-line for UWB applications

2015 ◽  
Vol 9 (2) ◽  
pp. 403-409 ◽  
Author(s):  
Richa Chandel ◽  
Anil Kumar Gautam ◽  
Binod Kumar Kanaujia

In this paper, a novel design and experimental study of microstrip-line-fed rhombus-shaped slot antenna is presented. The proposed antenna shows an ultra-wide band (UWB) operation with good impedance matching by choosing appropriate rhombus-shaped slot and feeding structure. The proposed antenna has a simple structure and compact size as compared with many reported antennas. The measured results validate the design and the impedance bandwidth can operate from 2.78 to 12.92 GHz (10.14 GHz), which evidently covers entire UWB (3.1–10.6 GHz). Furthermore, the key parameters of the antenna are also discussed to study their persuade on the antenna performance.

Author(s):  
B. Hammache ◽  
A. Messai ◽  
I. Messaoudene ◽  
T. A. Denidni

Abstract In this paper, a compact stepped slot antenna for ultra-wideband (UWB) applications is proposed. A very small size and UWB bandwidth operation are achieved by integrating a stepped slot in the back side of the antenna. This stepped slot is excited by using a 50 Ω-feed line in the top side of the antenna. The antenna is characterized by an impedance bandwidth between 3.05 GHz and more than 12 GHz. The dimensions of the antenna are 17 mm × 8 mm × 1.27 mm, which leads to the most compact size compared with other works in the literature. The integrated stepped slot is divided into additional elementary slots, where each elementary slot has a matching point. Adding these elementary slots allows to increase further the operating bandwidth. The radiation pattern of the compact stepped slot antenna is omnidirectional in the H-plane and bidirectional in the E-plane. The measurement results agree well with the simulated ones in terms of impedance matching and radiation pattern.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 156
Author(s):  
Mohamed El Bakkali ◽  
Moulhime El Bekkali ◽  
Gurjot Singh Gaba ◽  
Josep M. Guerrero ◽  
Lavish Kansal ◽  
...  

Among other CubeSat subsystems, Antenna is one of the most important CubeSat components as its design determines all the telecommunication subsystems’ performances. This paper presents a coplanar wave-guide (CPW)-fed equilateral triangular slot antenna constructed and analyzed for CubeSat communications at S-band. The proposed antenna alone presents high gain and ultra-wide band while its radiation pattern is bidirectional at an unlicensed frequency of 2450 MHz. The objective is to use the CubeSat chassis as a reflector for reducing the back-lobe radiation and hence minimizing interferences with electronic devices inside the CubeSat. This leads to a high gain of 8.20 dBi and a unidirectional radiation pattern at an industrial, scientific and mdical (ISM) band operating frequency of 2450 MHz. In addition to that, the presented antenna is low-profile and exhibits high return loss, ultra-wide impedance bandwidth, and good impedance matching at 2450 MHz.


2014 ◽  
Vol 7 (5) ◽  
pp. 571-577
Author(s):  
Raghupatruni Venkat Siva Ram Krishna ◽  
Raj Kumar ◽  
Nagendra Kushwaha

A compact slot antenna for high-gain ultra wideband applications is presented. The slot is asymmetrically cut in the ground plane and is a combination of two rectangles. A hexagonal patch with two stepped coplanar waveguide-feed is used to excite the slot. The capacitive reactance of the hexagonal patch is neutralized by the inductive reactance created by the asymmetric slot and results into wider impedance matching. The measured impedance bandwidth of the proposed antenna is 11.85 GHz (2.9–14.75 GHz). The radiation patterns of the proposed antenna are found to be omni-directional in the H-plane and bi-directional in the E-plane. To enhance the gain of the antenna, a compact three-layer frequency selective surface (FSS) is used as a reflector. The overall thickness of the FSS is 3.5 mm. There is 4–5 dBi improvement in antenna gain after application of the FSS. The measured and simulated results are in good agreement.


Frequenz ◽  
2018 ◽  
Vol 72 (9-10) ◽  
pp. 401-406 ◽  
Author(s):  
Feng Wei ◽  
Xin Tong Zou ◽  
Xin Yi Wang ◽  
Bin Li ◽  
Xi Bei Zhao

Abstract A compact differential ultra-wide band (UWB) planar quasi-Yagi antenna is presented in this paper. The proposed antenna consists of a balanced stepped-impedance microstrip-slotline transition structure, a driver dipole and one parasitic strip. A wide differential-mode (DM) impedance bandwidth covering from 3.8 to 9.5 GHz is realized. Meanwhile, a high and wideband common-mode (CM) suppression can be achieved by employing the balanced stepped-impedance microstrip-slotline transition structure. It is noted that the DM passband is independent from the CM response, which can significantly simplify the design procedure. In addition, a reconfigurable sharp DM notched band from 5.6 to 6.7 GHz is generated by adding one pair of quarter-wavelength varactor-loaded short-circuited stubs adjacent to the microstrip line symmetrically. In order to illustrate the effectiveness of the design, two prototypes of the antennas are designed, fabricated, and measured. A good agreement between the simulated and measured results is observed.


This article deals with the various designs of a novel compact microstrip fed UWB antenna to investigate the corresponding return losses of different structures. The dimension of the designed antenna is 33 x 19 x 1.9 mm3 with FR4 substrate and it can be operated from 2.846 - 11.7458 GHz. The effects of varying the structure of antenna are to exhibit the investigation of corresponding return losses. Different structures of antenna are simulated in Ansoft HFSS simulator. The results of return losses and radiation patterns are explored with the ultra wide band (UWB) rectangular Stair slot antenna. The modified structure of antenna shows the minimized return loss with an enhanced bandwidth that satisfies good UWB characteristics. Antenna performance can also be explored from the radiation behavior of the antenna which is relatively omni-directional pattern for rectangular Stair slot antenna


2014 ◽  
Vol 513-517 ◽  
pp. 3103-3106
Author(s):  
Li Zhu ◽  
Xiang Jun Gao ◽  
Guo Cheng Wu ◽  
Guang Ming Wang

In this paper, a novel broadband circularly polarized (CP) slot antenna is proposed and fabricated, in which the perturbation configuration with two quarter annular rings fabricated cornerways in the square slot is designed and a simple Photonic-bandgap (PBG) structure is employed. Through simulating and testing, the broad impedance bandwidth of 81.5%(VSWR<2.0) and the 3dB axial ratio (AR) bandwidth of 48.2% are achieved respectively. This slot antenna will be widely utilized in communication field. These instructions give you basic guidelines for preparing papers for conference proceedings.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Guang Sun ◽  
Ge Gao ◽  
Tingting Liu ◽  
Yi Liu ◽  
Hu Yang

In this paper, a wideband slot antenna element and its array with stereoscopic differentially fed structures are proposed for the radar system. Firstly, a series of slots and a stereoscopic differentially fed structure are designed for the antenna element, which makes it possess a wide bandwidth, stable radiation characteristics, and rather high gain. Moreover, the stereoscopic feeding structure can firmly support the antenna’s radiation structure and reduce the influence of feeding connectors on radiating performance. Secondly, a 4 × 4 array is designed using the proposed antenna element. And a hierarchical feeding network is designed for the array on the basis of the stereoscopic differentially fed structure. For validation, the antenna element and 4 × 4 array are both fabricated and measured: (1) the measured −10 dB impedance bandwidth of the antenna element is 62% (6.8–12.9 GHz) and the gain within the entire band is 5–9.7 dBi and (2) the measured −10 dB impedance bandwidth of the array is approximately 50% (7 to 12 GHz) with its gain being 14–19.75 dBi within the entire band. Notably, measured results agree well with simulations and show great advantages over other similar antennas on bandwidth and gain.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Dong Sik Woo ◽  
Young-Ki Cho ◽  
Kang Wook Kim

Amplitude and phase balances of two types of microstrip-(MS-) to-coplanar stripline (CPS) baluns have been analyzed through simulations and measurements, and their effects on broadband antenna performance are investigated. The impedance bandwidth of the balun determined by a back-to-back configuration can sometimes overestimate the balun operating bandwidth. With the conventional balun with a 180° phase delay line, it is observed that the balun balance over the operating frequencies becomes much more improved as the CPS length increases to over 0.1 λg. As compared with the conventional balun, the proposed MS-to-CPS balun demonstrated very wideband performance from 5 to over 20 GHz. With the proposed balun, amplitude and phase imbalances are within 1 dB and ±5°, respectively. Effects of the balun imbalance on overall broadband antenna performance are also discussed with a quasi-Yagi antenna and a narrow beamwidth tapered slot antenna (TSA).


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Liping Han ◽  
Caixia Wang ◽  
Wenmei Zhang ◽  
Runbo Ma ◽  
Qingsheng Zeng

A wideband slot antenna with frequency- and pattern-reconfigurable characteristics for TD-LTE (3.4–3.8 GHz) and C-band (3.7–4.2 GHz) applications is proposed. The antenna consists of two symmetric slots that are fed by a fork-shaped microstrip line. Two PIN diodes are loaded in the slots to produce two different frequency bands. Meanwhile, two additional PIN diodes are inserted in the feed line to achieve the pattern reconfigurability. The wideband operation is realized by using the symmetric slots and fork-shaped feed line. Simulated and measured results show that the antenna provides 25° and 20° beam-steering in 3.4–3.8 and 3.7–4.2 GHz bands, respectively. Also, an impedance bandwidth of at least 12.8% is obtained in the operating bands.


Sign in / Sign up

Export Citation Format

Share Document