Modified Y-junction SIW power divider/combiner circuit

2018 ◽  
Vol 10 (8) ◽  
pp. 877-882 ◽  
Author(s):  
Kaijun Song ◽  
Zihang Luo ◽  
Song Guo ◽  
Maoyu Fan ◽  
Yedi Zhou

AbstractA modified compact Y-junction substrate-integrated waveguide (SIW) four-way power divider (PD)/combiner is proposed in this paper. The proposed approach is based on the traditional Y-junction waveguide. By using direct transition structure from SIW to half-mode SIW, four-way PD that provides equal power split to all four output ports is achieved. The even- and odd-mode equivalent circuits are given to analyze and design the PD. The measured results validate the proposed design methodology and show good agreement with the simulation results. The measured 17 dB return loss bandwidth and 1.2 dB insertion loss bandwidth of this four-way PD are both about 2.5 GHz.

Frequenz ◽  
2020 ◽  
Vol 74 (7-8) ◽  
pp. 263-270
Author(s):  
Cao Zeng ◽  
Xue Han Hu ◽  
Feng Wei ◽  
Xiao Wei Shi

AbstractIn this paper, a tunable balanced-to-balanced in-phase filtering power divider (FPD) is designed, which can realize a two-way equal power division with high selectivity and isolation. A differential-mode (DM) passband with a steep filtering performance is realized by applying microstrip stub-loaded resonators (SLRs). Meanwhile, six varactors are loaded to the SLRs to achieve the center frequency (CF) and bandwidth adjustment, respectively. U-type microstrip lines integrated with stepped impedance slotline resonators are utilized as the differential feedlines, which suppress the common-mode (CM) intrinsically, making the DM responses independent of the CM ones. A tuning center frequency from 3.2 to 3.75 GHz and a fractional bandwidth (12.1–17.6%) with more than 10 dB return loss and less than 2.3 dB insertion loss can be achieved by changing the voltage across the varactors. A good agreement between the simulated and measured results is observed. To the best of authors' knowledge, the proposed balanced-to-balanced tunable FPD is first ever reported.


2013 ◽  
Vol 385-386 ◽  
pp. 1292-1295
Author(s):  
Xu Han ◽  
Jian Hua Xu

A planar power divider operating over the whole Ku-band is presented. The proposed device utilizes a T-microstrip junction combined with defected ground structure and an elliptical patch at the centre of the T-junction. An isolation resistor is connected across the slotted ground plane. The simulated results of the divider show equal power split, insertion loss is less than 0.3dB, return loss of all ports are better than 15dB, and isolation is better than 15dB over the whole Ku-band.


2015 ◽  
Vol 37 ◽  
pp. 334
Author(s):  
Masoud Khoubroo Eslamloo ◽  
Pejman Mohammadi

In this letter a novel broad band substrate integrated waveguide (SIW) power divider is proposed. It consist of four output channels made by SIW with equal length and equal width. Design equations and process are given with mathematical analysis. The propagation constant of the output signals have been adjusted by utilize only four via in the middle of the output arms. As a result a novel equal output power divider, is obtained accordingly. The experimental results of a prototype at 10 GHz shows 3.1 GHz bandwidth in both simulation and measurement results. Return loss and transmission coefficients have good agreement with simulation results in considered band.


2018 ◽  
Vol 7 (3) ◽  
pp. 1304
Author(s):  
M Siva Charan ◽  
A Rajasekhar ◽  
K V. Venkateswara Rao ◽  
Ch Lakshmi Prasanna ◽  
Praveen Vummadisetty. Naidu ◽  
...  

In this paper, a compact 8 way microstrip line Wilkinson Power Divider (WPD) is designed and proposed. The equal power divider con-sists of multiple multi-section WPD’s with isolation resistors. By utilizing the multi-sections concept, a remarkably increase in the band-width is observed. In the design process, RT 5880 substrate is used with the thickness of 0.8 mm and dielectric constant of 2.2 and loss tangent of 0.0004. The simulated results such as return loss, insertion loss and isolation are plotted by using ADS simulation software and obtained results show good agreement. 


Frequenz ◽  
2017 ◽  
Vol 72 (1-2) ◽  
Author(s):  
Lei Chen ◽  
Xiao Yan Li ◽  
Feng Wei

AbstractA balanced tri-band equal power divider (PD) is proposed based on a balanced stepped-impedance microstrip-slotline transition structure in this paper. Multi-band differential-mode (DM) responses can be realized by embedding multiple complementary split-ring resonators (CSRRs) into the slotline resonator. It is found that a high and wideband common-mode (CM) suppression can be achieved. Moreover, the center frequencies of the DM passbands are independent from the CM ones, which significantly simplifies the design procedure. In order to validate its practicalbility, a balanced PD with three DM passbands centred at 1.57, 2.5 and 3.5 GHz is fabricated and a good agreement between the simulated and measured results is observed. To our best knowledge, a balanced tri-band PD is the first ever reported.


2019 ◽  
Vol 11 (2) ◽  
pp. 139-142
Author(s):  
Zhen Tan ◽  
Qing-Yuan Lu ◽  
Jian-Xin Chen

AbstractThis paper presents a novel balanced-to-balanced power divider (PD) based on a simple and compact three-line coupled structure for the first time. By bisecting the proposed symmetrical structure, the differential mode (DM) and the common mode (CM) equivalent circuits can be obtained for analysis. The DM equivalent circuit exhibits a three-line in-phase power dividing response, and then a resistor is added between the two outputs for achieving good isolation. Meanwhile, the CM equivalent circuit shows a three-line all-stop response so that the CM suppression in this design does not need to be considered. Accordingly, the detailed design procedure of the DM PD is given. For demonstration, a prototype centered at 1.95 GHz is designed, fabricated, and measured. The simulated and measured results with good agreement are presented, showing low DM loss and wideband CM suppression.


Author(s):  
Dian Widi Astuti ◽  
Rizki Ramadhan Putra ◽  
Muslim Muslim ◽  
Mudrik Alaydrus

The substrate integrated waveguide (SIW) structure is the candidate for many application in microwave, terahertz and millimeter wave application. It because of SIW structure can integrate with any component in one substrate than others structure. A kind components using SIW structure is a filter component, especialy bandpass filter. This research recommended SIW bandpass filter using rectangular open loop resonator for giving more selectivity of filter. It can be implemented for short range device (SRD) application in frequency region 2.4 - 2.483 GHz. Two types of SIW bandpass filter are proposed. First, SIW bandpass filter is proposed using six rectangular open loop resonators while the second SIW bandpass filter used eight rectangular open loop resonators. The simulation results for two kinds of the recommended rectangular open loop resonators have insertion loss (S<sub>21</sub> parameter) below 2 dB and return loss (S<sub>11</sub> parameter) more than 10 dB. Fabrication of the recommended two kind filters was validated by Vector Network Analyzer. The measurement results for six rectangular open loop resonators have 1.32 dB for S<sub>21</sub> parameter at 2.29 GHz while the S<sub>11</sub> parameter more than 18 dB at 2.26 GHz – 2.32 GHz. While the measurement results has good agreement for eight rectangular open loop resonators. Its have S<sub>21</sub> below 2.2 dB at 2.41 – 2.47 GHz and S<sub>11</sub> 16.27 dB at 2.38 GHz and 11.5 dB at 2.47 GHz.


2018 ◽  
Vol 10 (10) ◽  
pp. 1107-1112 ◽  
Author(s):  
Song Guo ◽  
Kaijun Song ◽  
Yedi Zhou ◽  
Yong Fan

AbstractThe ultra-wideband bandpass-response power divider with high-frequency selectivity is presented in this paper. This power divider consists of an impedance transformer, a filter network, and two isolation resistors. In order to realize the ultra-wideband filtering performance, parallel coupling lines and parallel open-circuit branches are applied to the second impedance converter. A resistor is added to the ends of the coupling lines to achieve good isolation and output return loss. The equivalent-circuit method is employed to analyze the presented power divider. The power divider, working at 3.45–8.29 GHz, is designed and fabricated. Two transmission zeros are generated at 2.8 and 9 GHz, respectively, and the out-of-band suppression is >13 dB. The measured results are in good agreement with the simulation ones.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 467 ◽  
Author(s):  
Naibo Zhang ◽  
Ze Yan ◽  
Ruiliang Song ◽  
Chunting Wang ◽  
Qiuquan Guo ◽  
...  

This paper presents a novel J band (220–325 GHz) MEMS switch design. The equivalent circuits, the major parameters, capacitance, inductance and resistance in the circuit were extracted and calculated quantitatively to carry out the radio frequency analysis. In addition, the mechanical property of the switch structure is analyzed, and the switching voltage is obtained. With the designed parameters, the MEMS switch is fabricated. The measurement results are in good agreement with simulation results, and the switch is actuated under a voltage of ~30 V. More importantly, the switch has achieved a low insertion loss of ~1.2 dB at 220 GHz and <~4 dB from 220 GHz to 270 GHz in the “UP” state, and isolation of ~16 dB from 220 GHz to 320 GHz in the “DOWN” state. Such switch shows great potential in the integration for terahertz components.


Frequenz ◽  
2014 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Karimi ◽  
M. Yazdani ◽  
H. Siahkamari ◽  
A. Lalbakhsh

AbstractA novel lowpass filter with wide stopband and sharp skirt characteristics is proposed. To obtain the applicable lowpass filter, several cells of coupled T-shaped resonator, U-shape and dumbbell-shaped resonators are connected in series. The proposed filter has low insertion loss, high return loss in the passband and wide stopband. The transition band is from 3.18 to 3.29 GHz with −3 and −20 dB, respectively. Results of the fabricated filter exhibit a roll-off and relative stopband bandwidth of 217 and 137%, respectively. Measurement and simulation results show good agreement.


Sign in / Sign up

Export Citation Format

Share Document