scholarly journals Connected slots antenna array feeding a high-gain lens for wide-angle beam-steering applications

Author(s):  
Imran Aziz ◽  
Erik Öjefors ◽  
Dragos Dancila

Abstract This paper presents a 60 GHz connected slots linear-phased array feeding a high-gain semi-symmetric lens antenna. This design provides high gain, broadband, and beam-steering capabilities for gigabit rate access and backhaul communications. The connected slots antenna array (CSAA) is excited at 16× equidistant points which not only yields spatial power combining but also allows the progressive phase changes to steer the beam in ±45° in azimuth plane. To characterize the CSAA-fed lens antenna, four different power splitters are fabricated which steer the main beam in 0, 15, 30, and 45°. The lens is designed in a way to overcome the scan loss and get comparatively higher gain when beam is steered away from the broadside. The measured results show 25.4 dBi maximum gain with 3 dB gain bandwidth covering the full band 57–66 GHz whereas 3 dB beam-steering range is ±45° for all frequencies. Besides, the half power beamwidth is 6 and 10° in elevation (E-plane) and azimuth plane (H-plane), respectively.

2017 ◽  
Vol 65 (1) ◽  
pp. 206-216 ◽  
Author(s):  
Huayan Jin ◽  
Wenquan Che ◽  
Kuo-Sheng Chin ◽  
Guangxu Shen ◽  
Wanchen Yang ◽  
...  

Author(s):  
Mikko Kyro ◽  
Veli-Matti Kolmonen ◽  
Pertti Vainikainen ◽  
Diane Titz ◽  
Christina Villeneuve
Keyword(s):  

2020 ◽  
Vol 10 (7) ◽  
pp. 2413 ◽  
Author(s):  
Yuntae Park ◽  
Jihoon Bang ◽  
Jaehoon Choi

A beam-steerable dual-circularly polarized 60 GHz antenna array is proposed. A 1 × 4 dual-fed stacked patch antenna array is integrated with an 8 × 8 Butler matrix. By utilizing the 8 × 8 Butler matrix, the proposed antenna array generates dual-circular polarization with beam-steering capability. The proposed antenna array system demonstrates good reflection coefficients in the frequency band ranging from 55.3 GHz to 64.9 GHz and has a mutual coupling of less than −10 dB over the frequency range of 57.5 GHz–63.2 GHz. At 60 GHz, the maximum gains and beam-steering angles for input ports 2, 4, 5, and 7 are 9.39 dBi at −38°, 10.67 dBi at −11°, 10.63 dBi at +11°, and 9.38 dBi at +39°, respectively. It is also demonstrated that the dual-polarization is well formed by switching the excitation ports. The right-handed circular polarization (RHCP) is formed when four ports from port 1 to port 4 are excited and left-handed circular polarization (LHCP) is formed when four ports from port 5 to port 8 are excited. The proposed antenna array system could be a good candidate for millimeter-wave 5G applications that require wide beam coverage and polarization diversity.


2020 ◽  
Vol 10 (13) ◽  
pp. 4546
Author(s):  
Tarek S. Mneesy ◽  
Radwa K. Hamad ◽  
Amira I. Zaki ◽  
Wael A. E. Ali

This paper presented the design and implementation of a 60 GHz single element monopole antenna as well as a two-element array made of two 60 GHz monopole antennas. The proposed antenna array was used for 5G applications with radiation characteristics that conformed to the requirements of wireless communication systems. The proposed single element was designed and optimized to work at 60 GHz with a bandwidth of 6.6 GHz (57.2–63.8 GHz) and a maximum gain of 11.6 dB. The design was optimized by double T-shaped structures that were added in the rectangular slots, as well as two external stubs in order to achieve a highly directed radiation pattern. Moreover, ring and circular slots were made in the partial ground plane at an optimized distance as a defected ground structure (DGS) to improve the impedance bandwidth in the desired band. The two-element array was fed by a feed network, thus improving both the impedance bandwidth and gain. The single element and array were fabricated, and the measured and simulated results mimicked each other in both return loss and antenna gain.


2020 ◽  
Vol 12 (5) ◽  
pp. 419-430
Author(s):  
Muhammad Anas ◽  
Hifsa Shahid ◽  
Abdul Rauf ◽  
Abdullah Shahid

AbstractA novel 1 × 4 phased array elliptical inverted T-shaped slotted sectored patch antenna with defected ground structure (DGS), resonate at proposed ultra-wide tetra band at 28, 43, 51, and 64 GHz with high gain and beam-steering capabilities is presented. An inverted T-shaped slotted stub is used with the sectored patch to achieve ultra-wideband properties. In order to resonate the antenna at four different bands, DGS of round bracket slot is etched on the ground. The 1 × 4 phased arrays are used at the top edge and bottom edge of mobile PCB with high gain. The simulation results show that the antenna has four ultra-wide bands: 25.8–29.7, 40.6–44.6, 49.2–53.1, and 62.2–74 GHz with a maximum gain of 16.5 dBi at 51 GHz. The phased array antenna is capable to steer its main beam within ±30° at the 26, 28, and 43 GHz, using appropriate phase shifts of each antenna element. The proposed millimeter wave antenna is particularly suitable for cellular infrastructures and can be a candidate for emerging 5G mobile applications. The availability of an additional 11.8 GHz (62.2–74 GHz) of contiguous unlicensed spectrum will allow the launching of new exciting wireless services.


2020 ◽  
Vol 68 (5) ◽  
pp. 3673-3684 ◽  
Author(s):  
Abdolmehdi Dadgarpour ◽  
Marco A. Antoniades ◽  
Abdelrazik Sebak ◽  
Ahmed A. Kishk ◽  
Milad Sharifi Sorkherizi ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fei-Peng Lai ◽  
Lu-Wu Chang ◽  
Yen-Sheng Chen

A compact substrate integrated waveguide (SIW) antenna array that operates at 28 GHz and 38 GHz is proposed for fifth generation (5G) applications. The proposed array consists of four SIW cavities fabricated on one single layer of substrate. Each cavity implements a rhombic slot and a triangular-split-ring slot, resonating on TE101 and TE102 modes at 28 GHz and 38 GHz, respectively. In comparison with dual-band SIW antennas in the literature, the proposed configuration depicts a miniature footprint (28.7 × 30.8 mm2) without stacking substrates. To excite the four cavities with equal power, a broadband power divider that supports the propagation of TE10 mode is designed. Accordingly, the impedance bandwidths are 26.6–28.3 GHz and 36.8–38.9 GHz. The measured realized peak gain over the lower and higher bands is 9.3–10.9 dBi and 8.7–12.1 dBi, respectively. The measured half-power beam widths (HPBWs) at 28 GHz and 38 GHz are 20.7° and 15.0°, respectively. Considering these characteristics, including dual bands, high gain, narrow beam widths, miniaturization, and single layer, the proposed antenna array is a suitable candidate for millimeter-wave 5G communication systems with the flexibility in switching operating frequency bands against channel quality variations.


Sign in / Sign up

Export Citation Format

Share Document