Processes of time-averaging in the terrestrial vertebrate record

1993 ◽  
Vol 6 ◽  
pp. 102-124 ◽  
Author(s):  
Russell W. Graham

The terrestrial vertebrate fossil record provides a window into the past evolution of taxa, communities, and ecosystems. It can also be used to reconstruct ancient environments, climates, and landscapes. Vertebrate fossils can document the evolution of humans and their interactions with fauna and environments. However, before the maximum potential of this record can be realized, it is essential to know the extent of temporal resolution, or time-averaging, represented by fossil samples.

Paleobiology ◽  
2009 ◽  
Vol 35 (1) ◽  
pp. 94-118 ◽  
Author(s):  
Adam Tomašových ◽  
Susan M. Kidwell

Despite extensive paleoecological analyses of spatial and temporal turnover in species composition, the fidelity with which time-averaged death assemblages capture variation in species composition and diversity partitioning of living communities remains unexplored. Do death assemblages vary in composition between sites to a lesser degree than do living assemblages, as would be predicted from time-averaging? And is the higher number of species observed in death relative to living assemblages reduced with increasing spatial scale? We quantify the preservation of spatial and temporal variation in species composition using 11 regional data sets based on samples of living molluscan communities and their co-occurring time-averaged death assemblages. (1) Compositional dissimilarities among living assemblages (LA) within data sets are significantly positively rank-correlated to dissimilarities among counterpart pairs of death assemblages (DA), demonstrating that pairwise dissimilarity within a study area has a good preservation potential in the fossil record. Dissimilarity indices that downplay the abundance of dominant species return the highest live-dead agreement of variation in species composition. (2) The average variation in species composition (average dissimilarity) is consistently smaller in DAs than in LAs (9 of 11 data sets). This damping of variation might arise from DAs generally having a larger sample size, but the reduction by ∼10–20% mostly persists even in size-standardized analyses (4 to 7 of 11 data sets, depending on metric). Beta diversity expressed by the number of compositionally distinct communities is also significantly reduced in death assemblages in size-standardized analyses (by ∼25%). This damping of variation and reduction in beta diversity is in accord with the loss of temporal resolution expected from time-averaging, without invoking taphonomic bias (from differential preservation or postmortem transportation) or sample-size effects. The loss of temporal resolution should directly reduce temporal variation, and assuming time-for-space substitution owing to random walk within one habitat and/or temporal habitat shifting, it also decreases spatial variation in species composition. (3) DAs are more diverse than LAs at the alpha scale, but the difference is reduced at gamma scales because partitioning of alpha and beta components differs significantly between LAs and DAs. This indicates that the effects of time-averaging are reduced with increasing spatial scale. Thus, overall, time-averaged molluscan DAs do capture variation among samples of the living assemblage, but they tend to damp the magnitude of variation, making them a conservative means of inferring change over time or variation among regions in species composition and diversity. Rates of temporal and spatial species turnover documented in the fossil record are thus expected to be depressed relative to the turnover rates that are predicted by models of community dynamics, which assume higher temporal resolution. Finally, the capture by DAs of underlying variation in the LA implies little variation in the net preservation potential of death assemblages across environments, despite the different taphonomic pathways suggested by taphofacies studies.


1993 ◽  
Vol 6 ◽  
pp. 9-33 ◽  
Author(s):  
Karl W. Flessa

Paleoecological and paleoenvironmental studies have a rich tradition of actualistic work on Recent biotas and environments. Ever since Lyell (and before) geologists have examined present–day sedimentary environments and faunas in an effort to interpret the environments and life of the past. After all, if the present is notthekey to the past, it is at leastakey to the past. However, there is no similarly long tradition of studying the Recent in an effort to gain insight into issues of the temporal resolution of fossil assemblages.


2000 ◽  
Vol 6 ◽  
pp. 171-182 ◽  
Author(s):  
Ben A. LePage ◽  
Hermann W. Pfefferkorn

When one hears the term “ground cover,” one immediately thinks of “grasses.” This perception is so deep-seated that paleobotanists even have been overheard to proclaim that “there was no ground cover before grasses.” Today grasses are so predominant in many environments that this perception is perpetuated easily. On the other hand, it is difficult to imagine the absence or lack of ground cover prior to the mid-Tertiary. We tested the hypothesis that different forms of ground cover existed in the past against examples from the Recent and the fossil record (Table 1). The Recent data were obtained from a large number of sources including those in the ecological, horticultural, and microbiological literature. Other data were derived from our knowledge of Precambrian life, sedimentology and paleosols, and the plant fossil record, especially in situ floras and fossil “monocultures.” Some of the data are original observations, but many others are from the literature. A detailed account of these results will be presented elsewhere (Pfefferkorn and LePage, in preparation).


PalZ ◽  
2021 ◽  
Author(s):  
Carolin Haug ◽  
Joachim T. Haug

AbstractWhip spiders (Amblypygi), as their name suggests, resemble spiders (Araneae) in some aspects, but differ from them by their heart-shaped (prosomal) dorsal shield, their prominent grasping pedipalps, and their subsequent elongate pair of feeler appendages. The oldest possible occurrences of whip spiders, represented by cuticle fragments, date back to the Devonian (c. 385 mya), but (almost) complete fossils are known from the Carboniferous (c. 300 mya) onwards. The fossils include specimens preserved on slabs or in nodules (Carboniferous, Cretaceous) as well as specimens preserved in amber (Cretaceous, Eocene, Miocene). We review here all fossil whip spider specimens, figure most of them as interpretative drawings or with high-quality photographs including 3D imaging (stereo images) to make the three-dimensional relief of the specimens visible. Furthermore, we amend the list by two new specimens (resulting in 37 in total). The fossil specimens as well as modern whip spiders were measured to analyse possible changes in morphology over time. In general, the shield appears to have become relatively broader and the pedipalps and walking appendages have become more elongate over geological time. The morphological details are discussed in an evolutionary framework and in comparison with results from earlier studies.


Paleobiology ◽  
2010 ◽  
Vol 36 (3) ◽  
pp. 428-452 ◽  
Author(s):  
Richard A. Krause ◽  
Susan L. Barbour ◽  
Michał Kowalewski ◽  
Darrell S. Kaufman ◽  
Christopher S. Romanek ◽  
...  

The variation in time-averaging between different types of marine skeletal accumulations within a depositional system is not well understood. Here we provide quantitative data on the magnitude of time-averaging and the age structure of the sub-fossil record of two species with divergent physical and ecological characteristics, the brachiopodBouchardia roseaand the bivalveSemele casali.Material was collected from two sites on a mixed carbonate-siliciclastic shelf off the coast of Brazil where both species are dominant components of the local fauna.Individual shells (n= 178) were dated using amino acid racemization (aspartic acid) calibrated with 24 AMS radiocarbon dates. Shell ages range from modern to 8118 yearsb.p.for brachiopods, and modern to 4437 years for bivalves. Significant differences in the shape and central tendency of age-frequency distributions are apparent between each sample. Such differences in time-averaging magnitude confirm the assumption that taphonomic processes are subject to stochastic variation at all spatial and temporal scales. Despite these differences, each sample is temporally incomplete at centennial resolution and three of the four samples have similar right-skewed age-frequency distributions. Simulations of temporal completeness indicate that samples of both species from the shallow site are consistent with a more strongly right-skewed and less-complete age-frequency distribution than those from the deep site.We conclude that intrinsic characteristics of each species exert less control on the time-averaging signature of these samples than do extrinsic factors such as variation in rates of sedimentation and taphonomic destruction. This suggests that brachiopod-dominated and bivalve-dominated shell accumulations may be more similar in temporal resolution than previously thought, and that the temporal resolution of multi-taxic shell accumulations may depend more on site-to-site differences than on the intrinsic properties of the constituent organisms.


2011 ◽  
Vol 1 (1) ◽  
pp. e1 ◽  
Author(s):  
Tanya M. Smith ◽  
Anne-Marie Bacon ◽  
Fabrice Demeter ◽  
Ottmar Kullmer ◽  
Kim Thuy Nguyen ◽  
...  

Orangutans (Pongo) are the only great ape genus with a substantial Pleistocene and Holocene fossil record, demonstrating a much larger geographic range than extant populations. In addition to having an extensive fossil record, Pongo shows several convergent morphological similarities with Homo, including a trend of dental reduction during the past million years. While studies have documented variation in dental tissue proportions among species of Homo, little is known about variation in enamel thickness within fossil orangutans. Here we assess dental tissue proportions, including conventional enamel thickness indices, in a large sample of fossil orangutan postcanine teeth from mainland Asia and Indonesia. We find few differences between regions, except for significantly lower average enamel thickness (AET) values in Indonesian mandibular first molars. Differences between fossil and extant orangutans are more marked, with fossil Pongo showing higher AET in most postcanine teeth. These differences are significant for maxillary and mandibular first molars. Fossil orangutans show higher AET than extant Pongo due to greater enamel cap areas, which exceed increases in enamel-dentine junction length (due to geometric scaling of areas and lengths for the AET index calculation). We also find greater dentine areas in fossil orangutans, but relative enamel thickness indices do not differ between fossil and extant taxa. When changes in dental tissue proportions between fossil and extant orangutans are compared with fossil and recent Homo sapiens, Pongo appears to show isometric reduction in enamel and dentine, while crown reduction in H. sapiens appears to be due to preferential loss of dentine. Disparate selective pressures or developmental constraints may underlie these patterns. Finally, the finding of moderately thick molar enamel in fossil orangutans may represent an additional convergent dental similarity with Homo erectus, complicating attempts to distinguish these taxa in mixed Asian faunas. 


2001 ◽  
Vol 75 (6) ◽  
pp. 1119-1127 ◽  
Author(s):  
Jay A. Schneider

Over the past 75 years, the higher-level taxonomy of bivalves has received less attention than that of their fellow molluscs, gastropods. The publication of the bivalve volumes of the Treatise on Invertebrate Paleontology in 1969 was not followed by an explosion of study into the evolution of bivalves; rather, with only one or two exceptions, bivalve workers were noticeably absent from the cladistic and molecular revolutions that were taking place during the 1970s and 1980s, even as gastropods received considerable attention. Over the past ten years, cladistics and molecular systematics have begun to be applied to solve problems of bivalve evolutionary biology. These studies, most of which have been undertaken by paleontologists, have halted the stagnation in bivalve systematics. Bivalve systematics looks to have an exciting future, as the excellent fossil record of the Bivalvia will be used in conjunction with cladistics and molecular systematics to solve problems in not just bivalve evolution but evolutionary biology in general.


Zootaxa ◽  
2016 ◽  
Vol 4200 (2) ◽  
pp. 327 ◽  
Author(s):  
PEDRO S. R. ROMANO

Pelomedusoides is the most diverse clade of side-necked turtles and there is an extensive fossil record (de Broin, 1988; Lapparent de Broin, 2000; Gaffney et al., 2006, 2011) that dates back at least to the Barremian (Lower Cretaceous) (Romano et al., 2014). Its large fossil record evidences a greater diversity in the past, particularly at the end of the Mesozoic, and exhibits a good sampling of species that are represented by skull material (Gaffney et al., 2006, 2011). As a consequence, the most complete and recent phylogenetic hypotheses for this clade (e.g. Romano et al., 2014; Cadena, 2015) are based on matrices comprising a great amount of cranial characters derived largely from Gaffney et al. (2006, 2011). In addition, it is well established that shell characters show a lot of phenotypic plasticity, even in the fossil species (Romano, 2008; Gaffney et al., 2006, 2011). In most cases it consequently is not justified to rely on “diagnostic features” of poorly informative shell-only material for describing a new species. Because of that, most authors remark new morphotypes in the literature when such aberrant specimens are recovered, but do not make any nomenclatural act by proposing a new yet poorly supported species (e.g. Romano et al., 2013; Ferreira & Langer, 2013; Menegazzo et al., 2015). Unfortunately, such a supposedly new bothremydid turtle (Pleurodira: Bothremydidae) from the Early Paleocene of Brazil was recently described based on poorly diagnostic remains (Carvalho et al., 2016; hereafter CGB, for the authors initials) and a correction of this unfounded nomenclatural act is required. In addition I present some comments on shell only material from Brazil in order to guide splitter-taxonomists to stop describing poorly preserved fossil specimens as new species. 


Evolution ◽  
2018 ◽  
Vol 72 (11) ◽  
pp. 2276-2291 ◽  
Author(s):  
Graham E. Budd ◽  
Richard P. Mann
Keyword(s):  

Author(s):  
Paul B. Wignall

Despite the less-than-perfect nature of the fossil record, it still provides a unique window on the history of life, and reveals that there have been dramatic fluctuations in extinction intensities since complex life evolved around 600 million years ago. ‘Extinction in the past’ considers Jack Sepkoski’s database compiled in the 1980s, and his series of highly informative charts showing both diversity and extinction rates since the start of the Cambrian Period 541 million years ago. The calculation of extinction rates and the improved dating of extinction events are discussed, along with the extinction trends that can be observed. Fossils also provide valuable evidence on the nature of selection during extinction.


Sign in / Sign up

Export Citation Format

Share Document