Overlay of residual herbicides in rice for improved weed management

2019 ◽  
Vol 33 (03) ◽  
pp. 426-430 ◽  
Author(s):  
Matthew J. Osterholt ◽  
Eric P. Webster ◽  
David C. Blouin ◽  
Benjamin M. McKnight

AbstractA study was conducted at the Louisiana State University Agricultural Center’s H. Rouse Caffey Rice Research Station in 2017 and 2018 to evaluate a prepackaged mixture of clomazone plus pendimethalin applied delayed preemergence (DPRE) or POST within an herbicide residual overlay with saflufenacil, clomazone, or quinclorac. POST applications included penoxsulam or halosulfuron in combination with the second residual application. No differences were observed in barnyardgrass control (92% to 98%) at 14 days after treatment (DAT). At 42 DAT, barnyardgrass treated with clomazone plus pendimethalin in combination with either clomazone or quinclorac at either timing was controlled 95% to 96%. However, when saflufenacil was applied PRE, regardless of the POST herbicide or when saflufenacil was applied POST with halosulfuron, barnyardgrass control was reduced to 78% to 81%, compared with 95% to 96% with the control with all other residual combinations. Yellow nutsedge and rice flatsedge control increased when treated with halosulfuron compared with penoxsulam across all evaluation dates. At 28 and 42 DAT, texasweed treated with saflufenacil PRE, regardless of POST applications, was controlled 83% and 87%, respectively, and this was greater control than provided by clomazone or quinclorac applied PRE regardless of POST herbicide program.

2021 ◽  
pp. 1-21
Author(s):  
Matthew J. Osterholt ◽  
Eric P. Webster ◽  
Benjamin M. McKnight ◽  
David C. Blouin

A study was conducted at the Louisiana State University Agricultural Center’s H. Rouse Caffey Rice Research Station in 2017 and 2018 to evaluate the interaction between a pre-package mixture of clomazone plus pendimethalin applied at 0, 760, 1145, or 1540 g ai ha-1 mixed with propanil at 0, 1120, 2240, or 4485 g ai ha-1. A synergistic response occurred when barnyardgrass was treated with all rates of clomazone plus pendimethalin mixed with either rate of propanil evaluated at 56 d after treatment. Unlike barnyardgrass, an antagonistic response occurred for yellow nutsedge control when treated with 760 and 1540 g ha-1 of clomazone plus pendimethalin mixed with 1120 or 2240 g ha-1 of propanil at 28 d after treatment; however, 1145 g ha-1 of clomazone plus pendimethalin mixed with 4485 g ha-1 of propanil resulted in a neutral interaction. At 28 d after treatment, Rice flatsedge treated with for all herbicide mixtures resulted in neutral interactions. The synergism of clomazone plus pendimethalin applied at 1540 g ha—1 mixed with propanil applied at 2240 or 4485 g ha-1 for barnyardgrass control resulted in an increased rough rice yield compared with 760 or 1145 g ha-1 of clomazone plus pendimethalin mixed with propanil applied at 1120 or 2240 g ha-1. These results indicate if barnyardgrass and rice flatsedge are present in a rice field the pre-package mixture of clomazone plus pendimethalin mixed with propanil can be an option for growers. However, if yellow nutsedge infest the area other herbicides may be needed.


2012 ◽  
Vol 26 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Rakesh K. Godara ◽  
Billy J. Williams ◽  
Eric P. Webster ◽  
James L. Griffin ◽  
Donnie K. Miller

Field experiments were conducted in 2006, 2007, and 2008 at the Louisiana State University Agricultural Center's Northeast Research Station near St. Joseph, LA, to evaluate imazosulfuron programs involving rate, application timings, and tank mixes for PRE and POST broadleaf weed control in drill-seeded rice. Imazosulfuron showed residual activity against both Texasweed and hemp sesbania. PRE-applied imazosulfuron at 168 g ai ha−1and higher rates provided 83 to 93% Texasweed control at 4 WAP. At 12 WAP, Texasweed control with 168 g ha−1and higher rates was 92%. Hemp sesbania control with 168 g ha−1and higher rates was 86 to 89% at 4 WAP and 65 to 86% at 12 WAP. Imazosulfuron at 224 g ha−1applied EPOST provided 84 to 93% Texasweed control and 82 to 87% hemp sesbania control, and it was as effective as its tank mixture with bispyribac-sodium. When applied LPOST, four- to five-leaf Texasweed, imazosulfuron alone at 224 g ha−1was not effective against Texasweed and hemp sesbania, but did improve weed control when mixed with bispyribac-sodium at 17.6 g ai ha−1.


2010 ◽  
Vol 20 (6) ◽  
pp. 977-982 ◽  
Author(s):  
Christopher A. Clark ◽  
Tara P. Smith ◽  
Donald M. Ferrin ◽  
Arthur Q. Villordon

Because sweetpotato (Ipomoea batatas) is vegetatively propagated, viruses and mutations can accumulate readily, which can lead to cultivar decline. Sweetpotato foundation seed programs in the United States maintain the integrity of commercial seed stock by providing virus-tested (VT) foundation seed to commercial producers. A survey was conducted in Louisiana from 2007 to 2009 to examine the performance and quality of the foundation seed after it had been integrated into commercial sweetpotato operations. G1 seed [grown 1 year after virus therapy in the foundation seed production field at the Sweet Potato Research Station, Louisiana State University Agricultural Center (LSU AgCenter), at Chase, LA] was used as a reference to compare the yield and virus incidence of growers' generation 2 (G2) and generation 3 (G3) seed roots (grown in the growers' seed production fields 1 or 2 years following the year of foundation seed production). Although yields of plants grown from G2 and G3 seed were 86.3% and 86.1% for U.S. No. 1 and 83.3% and 86.0% for total marketable, respectively, compared with the yields from G1 seed, they were not significantly different. Yield and virus incidence data suggest that seed quality may vary from year to year and from location to location. Results from this study suggest that producers are realizing yield benefits by incorporating VT foundation seed into their production schemes, but further benefits could be attained if ways to reduce re-infection with viruses can be found.


2004 ◽  
Vol 18 (3) ◽  
pp. 826-834 ◽  
Author(s):  
Walter E. Thomas ◽  
Ian C. Burke ◽  
John W. Wilcut

Four field studies were conducted at the Peanut Belt Research Station near Lewiston Woodville, NC, in 2000, 2001, and 2002 to evaluate crop tolerance, weed control, grain yield, and net returns in glyphosate-resistant corn with various herbicide systems. Preemergence (PRE) treatment options included no herbicide, atrazine at 1.12 kg ai/ha, or atrazine plus metolachlor at 1.68 kg ai/ha. Postemergence (POST) treatment options included glyphosate at 1.12 kg ai/ha as either the isopropylamine salt or the diammonium salt, either alone or in mixtures with mesotrione at 105 g ai/ha plus crop oil concentrate at 1% (v/v) or halosulfuron at 53 g ai/ha plus 0.25% (v/v) nonionic surfactant. All response variables were independent of glyphosate formulation. Addition of metolachlor to atrazine PRE improved large crabgrass and goosegrass control but did not always improve Texas panicum control. POST control of these annual grasses was similar with glyphosate alone or in mixture with halosulfuron or mesotrione. Glyphosate POST controlled common lambsquarters and common ragweed 89 and 93%, respectively. Glyphosate plus halosulfuron POST provided more effective yellow nutsedge control than glyphosate POST. Atrazine PRE or atrazine plus metolachlor PRE followed by any glyphosate POST treatment controlledIpomoeaspp. at least 93%. Glyphosate plus mesotrione in total POST systems always provided greater control ofIpomoeaspp. than glyphosate alone. The highest yielding treatments always included glyphosate POST, either with or without a PRE herbicide treatment. Similarly, systems that included any glyphosate POST treatment had the highest net returns.


Weed Science ◽  
2012 ◽  
Vol 60 (4) ◽  
pp. 593-599 ◽  
Author(s):  
Rakesh K. Godara ◽  
Billy J. Williams ◽  
James P. Geaghan

Experiments were conducted on potted plants under field conditions in 2007 and 2008 at the Louisiana State University Agricultural Center's Northeast Research Station near St. Joseph, LA, to evaluate Texasweed response to shade. Shade levels of 30, 50, 70, and 90% were achieved using 1.8-m by 1.8-m by 1.8-m tents built using 2.54-cm-diam polyvinyl chloride (PVC) pipe and polypropylene fabric. Shade had no effect on Texasweed emergence but significantly reduced its growth. There were significant growth differences between plants transferred directly and gradually to a given shade level. At 100 d after emergence, plants gradually exposed to 30, 50, 70, and 90% shade had 13, 22, 37, and 58% less total dry matter per plants, respectively, than did those in 0% shade. Texasweed height in 70 and 90% shade was increased by 28 and 20%, respectively. Texasweed seemed to mitigate the adverse effect of shade by increasing specific leaf area (SLA) and percentage of leaf biomass. Increasing SLA and the percentage of leaf biomass appears to be a strategy for efficient allocation of biomass for light capture and carbohydrate synthesis, which can be used for height increase until the plant rises above the crop canopy. Although fruit production was significantly reduced, Texasweed was able to reproduce in 90% shade.


2020 ◽  
Vol 81 ◽  
pp. 15-28
Author(s):  
VM Brown ◽  
MG Shirley ◽  
BD Keim ◽  
BD Marx ◽  
CG Lutz

This study examines the effect of meteorological variables, such as temperature, precipitation, cloud cover, and relative humidity on average monthly crawfish (Procambarus spp.) harvests at 6 research ponds located at the Aquaculture Research Station in Baton Rouge, Louisiana, USA, operated by the Louisiana State University Agricultural Center. Eight years (2006-2013) of harvest data were collected spanning February, March, and April of each year. Using multiple regression and model selection processes, the effect of meteorological variables was assessed at 3 different monthly lags (lag 0, 1, and 2) to determine which combination of variables best explained variance in average monthly crawfish pounds per trap (AMPT). The final model selected for lag 0 (adj-rsq = 0.73, p < 0.01), lag 1 (adj-rsq = 0.71, p < 0.01), and lag 2 (adj-rsq = 0.69, p < 0.01) generally included the same variables: monthly average low temperature, precipitation, and the preceding October/November precipitation (ON). Both monthly average low temperature and ON exhibited a statistically significant (p ≤ 0.05) positive effect on AMPT while controlling for other variables in the model, revealing the importance of warm temperatures and precipitation during October/November for crawfish harvests. Precipitation during the harvest month was not significant, but increased precipitation 1 and 2 mo before harvest significantly decreased AMPT. The number of hours with temperatures ≤0°C was also a significant variable negatively associated with AMPT 1 and 2 mo before harvest and, along with precipitation, could potentially be an early indicator for AMPT before harvests begin in southern Louisiana.


2018 ◽  
Vol 32 (5) ◽  
pp. 603-607 ◽  
Author(s):  
Gustavo M. Teló ◽  
Eric P. Webster ◽  
Benjamin M. McKnight ◽  
David C. Blouin ◽  
Samer Y. Rustom

AbstractA glasshouse study was established at Louisiana State University campus in Baton Rouge, LA, to evaluate the control of fall panicum and Nealley’s sprangletop treated with florpyrauxifen-benzyl. Florpyrauxifen was applied at 30 g ai ha–1to each grass species at the three- to four-leaf and one- to two-tiller stages of growth. At 21 d after treatment (DAT), fall panicum control was 91% when treated with florpyrauxifen at the three- to four-leaf stage, and Nealley’s sprangletop control was 78% to 82%, regardless of application timing 21 DAT. Leaf number, tiller number, plant height, and plant fresh weight were reduced when fall panicum and Nealley’s sprangletop were treated with florpyrauxifen. This information can be useful for developing weed management strategies with this herbicide for rice production, and it provides an additional mode of action to help manage and/or delay the development of herbicide-resistant weeds.


Sign in / Sign up

Export Citation Format

Share Document