Evaluation of Imazosulfuron for Broadleaf Weed Control in Drill-Seeded Rice

2012 ◽  
Vol 26 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Rakesh K. Godara ◽  
Billy J. Williams ◽  
Eric P. Webster ◽  
James L. Griffin ◽  
Donnie K. Miller

Field experiments were conducted in 2006, 2007, and 2008 at the Louisiana State University Agricultural Center's Northeast Research Station near St. Joseph, LA, to evaluate imazosulfuron programs involving rate, application timings, and tank mixes for PRE and POST broadleaf weed control in drill-seeded rice. Imazosulfuron showed residual activity against both Texasweed and hemp sesbania. PRE-applied imazosulfuron at 168 g ai ha−1and higher rates provided 83 to 93% Texasweed control at 4 WAP. At 12 WAP, Texasweed control with 168 g ha−1and higher rates was 92%. Hemp sesbania control with 168 g ha−1and higher rates was 86 to 89% at 4 WAP and 65 to 86% at 12 WAP. Imazosulfuron at 224 g ha−1applied EPOST provided 84 to 93% Texasweed control and 82 to 87% hemp sesbania control, and it was as effective as its tank mixture with bispyribac-sodium. When applied LPOST, four- to five-leaf Texasweed, imazosulfuron alone at 224 g ha−1was not effective against Texasweed and hemp sesbania, but did improve weed control when mixed with bispyribac-sodium at 17.6 g ai ha−1.

2018 ◽  
Vol 32 (4) ◽  
pp. 364-370 ◽  
Author(s):  
Zachary D. Lancaster ◽  
Jason K. Norsworthy ◽  
Robert C. Scott

AbstractField experiments were conducted in 2014 and 2015 in Fayetteville, Arkansas, to evaluate the residual activity of acetyl-CoA carboxylase (ACCase)–inhibiting herbicides for monocot crop injury and weed control. Conventional rice, quizalofop-resistant rice, grain sorghum, and corn crops were evaluated for tolerance to soil applications of six herbicides (quizalofop at 80 and 160 g ai ha–1, clethodim at 68 and 136 g ai ha–1, fenoxaprop at 122 g ai ha–1, cyhalofop at 313 g ai ha–1, fluazifop at 210 and 420 g ai ha–1, and sethoxydim at 140 and 280 g ai ha–1). Overhead sprinkler irrigation of 1.3 cm was applied immediately after treatment to half of the plots, and the crops planted into the treated plots at 0, 7, and 14 d after herbicide treatment. In 2014, injury from herbicide treatments increased with activation for all crops evaluated, except for quizalofop-resistant rice. At 14 d after treatment (DAT) in 2014, corn and grain sorghum were injured 19% and 20%, respectively, from the higher rate of sethoxydim with irrigation activation averaged over plant-back dates. Conventional rice was injured 13% by the higher rate of fluazifop in 2014. Quizalofop-resistant rice was injured no more than 4% by any of the graminicides evaluated in either year. In 2015, a rainfall event occurred within 24 h of initiating the experiment; thus, there were no differences between activation via irrigation or by rainfall. However, as in 2014, grain sorghum and corn were injured 16% and 13%, respectively, by the higher rate of sethoxydim, averaged over plant-back dates. All herbicides provided little residual control of grass weeds, mainly broadleaf signalgrass and barnyardgrass. These findings indicate the need to continue allowing a plant-back interval to rice following a graminicide application, unless quizalofop-resistant rice is to be planted. The plant-back interval will vary by graminicide and the amount of moisture received following the application.


2016 ◽  
Vol 8 (2) ◽  
pp. 663-667
Author(s):  
S. K. Das

Field experiments were conducted for three years at Pulses and Oilseeds Research Station, Berhampore, Murshidabad, West Bengal, India during rabi 2008, 2009 and 2010 to develop an efficient chemical weed management practice with newer herbicidal molecules in yellow sarson. The experiment was laid out in a randomized block design with three replications having eleven treatments. Experimental results revealed that highest seed yield (1456 kg ha-1) was recorded under the treatment twice hand weeding and lowest with weedy check (910 kg ha-1). Twice hand weeding recorded 60% higher seed yield over weedy check. Application of chemical herbicides significantly improved the seed yield over W0 at 5% level of significance.. Among the chemical weed control measures, application of Pendimathalin @ 1 kg a.i./ha (PE) recorded highest seed yield (1320 kg ha-1) of yellow sarson, which was found at par with application of Pendimathalin @ 1.5 kg a.i./ha (PE), Fluchloralin @ 1.5 kg a.i/ha (PPI) and Clodinafop @ 0.06 kg a.i./ha ( 25-30 DAS). Chemical weed management practices increased the seed yield of yellow sarson by 25.3 to 45.1% over weedy check. Highest weed control efficiency (86.4%) was recorded with hand weeding twice. Significant reduction in the total weed density and total weed dry weight were found with the application of chemical herbicides at 5% level of significance. Among the chemical herbicides Pendimathalin @ 1 kg a.i./ha (PE) recorded highest weed control efficiency (81.7%). Chemical weed control measures increased the total microbial population by 26.5 to 89.4% over weedy check and 6.6 to 59.6% over twice hand weeding and thus proved to be environmentally safe and economic for managing weeds in yellow sarson.


1992 ◽  
Vol 6 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Stacey A. Bruff ◽  
David R. Shaw

Field experiments were conducted in 1989 and 1990 on silty clay and sandy loam soils to evaluate weed control and soybean yield with early-April preplant incorporation of selective herbicides in stale seedbed soybean followed by non-selective weed control measures at planting. Metribuzin applied PPI early followed by chlorimuron POST coupled with either glyphosate or paraquat PRE controlled sicklepod, pitted morningglory, and hemp sesbania to the same extent of that treatment applied PPI at planting. All stale seedbed treatments with POST applications and glyphosate, paraquat, or tillage at planting controlled pitted morningglory over 70%. However, imazaquin or metribuzin applied PPI early without a POST treatment controlled sicklepod and pitted morningglory poorly. Frequently, applying PPI herbicides at planting increased control compared with early PPI applications, but this was overcome by POST treatments. Early stale seedbed applications of metribuzin did not result in more than 60% control of hemp sesbania, whereas metribuzin applied PPI at planting controlled over 85%. However, metribuzin plus chlorimuron controlled hemp sesbania at least 74%, regardless of application timing or tillage method, whereas no imazaquin treatment achieved over 65% control. All stale seedbed herbicide treatments increased soybean yield compared with the untreated stale seedbed check. Selective herbicide treatments with either non-selective herbicide in a stale seedbed program resulted in equivalent yield to PPI at planting treatments most often, except with metribuzin.


2019 ◽  
Vol 33 (03) ◽  
pp. 426-430 ◽  
Author(s):  
Matthew J. Osterholt ◽  
Eric P. Webster ◽  
David C. Blouin ◽  
Benjamin M. McKnight

AbstractA study was conducted at the Louisiana State University Agricultural Center’s H. Rouse Caffey Rice Research Station in 2017 and 2018 to evaluate a prepackaged mixture of clomazone plus pendimethalin applied delayed preemergence (DPRE) or POST within an herbicide residual overlay with saflufenacil, clomazone, or quinclorac. POST applications included penoxsulam or halosulfuron in combination with the second residual application. No differences were observed in barnyardgrass control (92% to 98%) at 14 days after treatment (DAT). At 42 DAT, barnyardgrass treated with clomazone plus pendimethalin in combination with either clomazone or quinclorac at either timing was controlled 95% to 96%. However, when saflufenacil was applied PRE, regardless of the POST herbicide or when saflufenacil was applied POST with halosulfuron, barnyardgrass control was reduced to 78% to 81%, compared with 95% to 96% with the control with all other residual combinations. Yellow nutsedge and rice flatsedge control increased when treated with halosulfuron compared with penoxsulam across all evaluation dates. At 28 and 42 DAT, texasweed treated with saflufenacil PRE, regardless of POST applications, was controlled 83% and 87%, respectively, and this was greater control than provided by clomazone or quinclorac applied PRE regardless of POST herbicide program.


2015 ◽  
Vol 29 (3) ◽  
pp. 544-549 ◽  
Author(s):  
Mohsen Mohseni-Moghadam ◽  
Douglas Doohan

Field experiments were conducted at the North Central Agricultural Research Station in Fremont, OH, in 2006 and 2007, to evaluate tolerance of banana pepper to S-metolachlor and clomazone, and the efficacy of these herbicides on green and giant foxtail, common lambsquarters, and common purslane. The crop was machine-transplanted in late spring of each year. Pretransplant (PRETP) herbicide treatments included two S-metolachlor rates (534 and 1,070 g ai ha−1), two clomazone rates (560 and 1,120 g ai ha−1), and four tank mixes of S-metolachlor plus clomazone (534 + 560 g ha−1, 1,070 + 560 g ha−1, 534 + 1,120 g ha−1, and 1,070 + 1,120 g ha−1). Crop injury and weed control data were collected at 2 and 4 wk after treatment (WAT). The crop was harvested two times from August to September. Minor crop injury was observed at 2 WAT only in 2006 and in plots treated with S-metolachlor, alone or in combination with clomazone. In 2007, slight crop injury at 6 WAT in most herbicide-treated plots was mostly related to weeds that grew regardless of herbicide treatment. In general, S-metolachlor provided less weed control than did clomazone or tank mixes of S-metolachlor plus clomazone. Clomazone did not reduce yield of banana pepper. Registration of clomazone would provide banana pepper growers an opportunity to control weeds caused by late emergence or poor initial control following a burndown herbicide application.


1997 ◽  
Vol 11 (2) ◽  
pp. 354-362 ◽  
Author(s):  
David L. Jordan ◽  
Alan C. York ◽  
James L. Griffin ◽  
Patrick A. Clay ◽  
P. Roy Vidrine ◽  
...  

Field experiments were conducted from 1993 to 1995 to compare weed control by the isopropylamine salt of glyphosate at 0.21, 0.42, 0.63, and 0.84 kg ae/ha applied at three stages of weed growth. Weed control by glyphosate applied at these rates alone or with ammonium sulfate at 2.8 kg/ha was also evaluated. In other experiments, potential interactions between glyphosate and acifluorfen, chlorimuron, and 2,4-DB were evaluated. Velvetleaf, prickly sida, sicklepod, pitted morningglory, entireleaf morningglory, palmleaf morningglory, and hemp sesbania were controlled more easily when weeds had one to three leaves compared with control when weeds had four or more leaves. Glyphosate controlled redroot pigweed, velvetleaf, prickly sida, sicklepod, and barnyardgrass more effectively than pitted morningglory, entireleaf morningglory, palmleaf morningglory, or hemp sesbania. Increasing the rate of glyphosate increased control, especially when glyphosate was applied to larger weeds. Greater variation in control was noted for pitted morningglory, palmleaf morningglory, prickly sida, and velvetleaf than for redroot pigweed, sicklepod, entireleaf morningglory, or hemp sesbania. Ammonium sulfate increased prickly sida and entireleaf morningglory control but did not influence sicklepod, hemp sesbania, or barnyardgrass control. Acifluorfen applied 3 d before glyphosate or in a mixture with glyphosate reduced barnyardgrass control compared with glyphosate applied alone. Chlorimuron did not reduce efficacy. Mixtures of glyphosate and 2,4-DB controlled sicklepod, entireleaf morningglory, and barnyardgrass similar to glyphosate alone.


2010 ◽  
Vol 20 (6) ◽  
pp. 977-982 ◽  
Author(s):  
Christopher A. Clark ◽  
Tara P. Smith ◽  
Donald M. Ferrin ◽  
Arthur Q. Villordon

Because sweetpotato (Ipomoea batatas) is vegetatively propagated, viruses and mutations can accumulate readily, which can lead to cultivar decline. Sweetpotato foundation seed programs in the United States maintain the integrity of commercial seed stock by providing virus-tested (VT) foundation seed to commercial producers. A survey was conducted in Louisiana from 2007 to 2009 to examine the performance and quality of the foundation seed after it had been integrated into commercial sweetpotato operations. G1 seed [grown 1 year after virus therapy in the foundation seed production field at the Sweet Potato Research Station, Louisiana State University Agricultural Center (LSU AgCenter), at Chase, LA] was used as a reference to compare the yield and virus incidence of growers' generation 2 (G2) and generation 3 (G3) seed roots (grown in the growers' seed production fields 1 or 2 years following the year of foundation seed production). Although yields of plants grown from G2 and G3 seed were 86.3% and 86.1% for U.S. No. 1 and 83.3% and 86.0% for total marketable, respectively, compared with the yields from G1 seed, they were not significantly different. Yield and virus incidence data suggest that seed quality may vary from year to year and from location to location. Results from this study suggest that producers are realizing yield benefits by incorporating VT foundation seed into their production schemes, but further benefits could be attained if ways to reduce re-infection with viruses can be found.


HortScience ◽  
2010 ◽  
Vol 45 (4) ◽  
pp. 693-695 ◽  
Author(s):  
Patrick E. McCullough ◽  
William Nutt

Turf managers may wish to reseed common bermudagrass [Cynodon dactylon (L.) Pers.] following weed control with rimsulfuron, simazine, or sulfosulfuron applications, but establishment may be affected by herbicide residual activity. Field experiments were conducted in Georgia to investigate bermudagrass reseeding intervals for these herbicides. Application timing before seeding reduced bermudagrass establishment more than herbicide rate. By four weeks after seeding, bermudagrass cover was 15%, 53%, 81%, and 90% of the untreated from herbicides applied zero, two, four, or six weeks before seeding, respectively. Simazine at 2.24 kg a.i./ha reduced bermudagrass cover more frequently than sulfosulfuron at 0.035 and 0.07 kg a.i./ha and rimsulfuron at 0.02 kg a.i./ha. Results suggest that common bermudagrass may be safely reseeded four to six weeks after rimsulfuron, simazine, or sulfosulfuron treatments, but applications made closer to the seeding date have the potential to significantly delay establishment.


2012 ◽  
Vol 22 (5) ◽  
pp. 638-643 ◽  
Author(s):  
Amit J. Jhala ◽  
Analiza H.M. Ramirez ◽  
Megh Singh

Herbicides are usually applied multiple times by growers for season long weed control in Florida citrus (Citrus sp.). Rimsulfuron, a sulfonylurea herbicide has been recently registered for control of certain grasses and broadleaf weeds in citrus. To increase the weed control spectrum and reduce application cost, citrus growers often prefer to tank mix herbicides. Field experiments were conducted in 2010 and 2011 in citrus groves in central Florida to evaluate weed control efficacy and crop safety of rimsulfuron applied alone or in tank mixes with flumioxazin, pendimethalin, or oryzalin. Herbicides were applied sequentially in spring and fall in both years on the same experimental plot. Results suggested that rimsulfuron applied alone controlled >80% broadleaf and grass weeds up to 30 days after treatment (DAT) and was comparable to tank mixing rimsulfuron with pendimethalin or oryzalin; however, control was reduced beyond 30 DAT. Rimsulfuron tank mixed with flumioxazin was the most effective treatment at 30 and 60 DAT that provided, respectively, ≥88% and >75%, control of broadleaf weeds including brazil pusley (Richardia brasiliensis), dog fennel (Eupatorium capillifolium), common ragweed (Ambrosia artemisiifolia), cotton weed (Froelichia floridana), and virginia pepperweed (Virginia virginicum) compared with other treatments. Control of natalgrass (Melinis repens) was higher in all tank mix treatments compared with rimsulfuron applied alone with no difference among tank mix partners. Rimsulfuron tank mixed with pendimethalin or oryzalin had no advantage over rimsulfuron applied alone for control of broadleaf weeds. Among sequential applications, weed control was better after fall herbicide application (August) compared with spring (April) because of residual activity of fall applied herbicides. Rimsulfuron tank mixed with flumioxazin will provide citrus growers with an additional weed control option.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-2
Author(s):  
David L Jordan

Determining compatibility of pesticides is important in developing effective management practices and adjusting to outbreaks of pests in cotton (Gossypium hirsutism L.). Field experiments were conducted in 2013 and 2014 to determine the effect of chloroacetamide herbicides with residual activity only and acephate with foliar activity against thrips (Frankliniella spp.) on control of emerged weeds by glyphosate, glufosinate, and a mixture of these herbicides. The residual herbicides acetochlor and S-metolachlor as well as the insecticide acephate did not affect control of emerged common ragweed (Ambrosia artemisiifolia L.) and Palmer amaranth (Amaranthus palmeri Watts.). Results from these trials indicate that weed control will not be compromised with co-application of glufosinate, glyphosate, and glufosinate plus glyphosate with acetochlor or S-metolachlor applied alone or with acephate.


Sign in / Sign up

Export Citation Format

Share Document