Interactions of Clomazone Plus Pendimethalin Mixed with Propanil in Rice

2021 ◽  
pp. 1-21
Author(s):  
Matthew J. Osterholt ◽  
Eric P. Webster ◽  
Benjamin M. McKnight ◽  
David C. Blouin

A study was conducted at the Louisiana State University Agricultural Center’s H. Rouse Caffey Rice Research Station in 2017 and 2018 to evaluate the interaction between a pre-package mixture of clomazone plus pendimethalin applied at 0, 760, 1145, or 1540 g ai ha-1 mixed with propanil at 0, 1120, 2240, or 4485 g ai ha-1. A synergistic response occurred when barnyardgrass was treated with all rates of clomazone plus pendimethalin mixed with either rate of propanil evaluated at 56 d after treatment. Unlike barnyardgrass, an antagonistic response occurred for yellow nutsedge control when treated with 760 and 1540 g ha-1 of clomazone plus pendimethalin mixed with 1120 or 2240 g ha-1 of propanil at 28 d after treatment; however, 1145 g ha-1 of clomazone plus pendimethalin mixed with 4485 g ha-1 of propanil resulted in a neutral interaction. At 28 d after treatment, Rice flatsedge treated with for all herbicide mixtures resulted in neutral interactions. The synergism of clomazone plus pendimethalin applied at 1540 g ha—1 mixed with propanil applied at 2240 or 4485 g ha-1 for barnyardgrass control resulted in an increased rough rice yield compared with 760 or 1145 g ha-1 of clomazone plus pendimethalin mixed with propanil applied at 1120 or 2240 g ha-1. These results indicate if barnyardgrass and rice flatsedge are present in a rice field the pre-package mixture of clomazone plus pendimethalin mixed with propanil can be an option for growers. However, if yellow nutsedge infest the area other herbicides may be needed.

2019 ◽  
Vol 33 (03) ◽  
pp. 426-430 ◽  
Author(s):  
Matthew J. Osterholt ◽  
Eric P. Webster ◽  
David C. Blouin ◽  
Benjamin M. McKnight

AbstractA study was conducted at the Louisiana State University Agricultural Center’s H. Rouse Caffey Rice Research Station in 2017 and 2018 to evaluate a prepackaged mixture of clomazone plus pendimethalin applied delayed preemergence (DPRE) or POST within an herbicide residual overlay with saflufenacil, clomazone, or quinclorac. POST applications included penoxsulam or halosulfuron in combination with the second residual application. No differences were observed in barnyardgrass control (92% to 98%) at 14 days after treatment (DAT). At 42 DAT, barnyardgrass treated with clomazone plus pendimethalin in combination with either clomazone or quinclorac at either timing was controlled 95% to 96%. However, when saflufenacil was applied PRE, regardless of the POST herbicide or when saflufenacil was applied POST with halosulfuron, barnyardgrass control was reduced to 78% to 81%, compared with 95% to 96% with the control with all other residual combinations. Yellow nutsedge and rice flatsedge control increased when treated with halosulfuron compared with penoxsulam across all evaluation dates. At 28 and 42 DAT, texasweed treated with saflufenacil PRE, regardless of POST applications, was controlled 83% and 87%, respectively, and this was greater control than provided by clomazone or quinclorac applied PRE regardless of POST herbicide program.


2012 ◽  
Vol 26 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Rakesh K. Godara ◽  
Billy J. Williams ◽  
Eric P. Webster ◽  
James L. Griffin ◽  
Donnie K. Miller

Field experiments were conducted in 2006, 2007, and 2008 at the Louisiana State University Agricultural Center's Northeast Research Station near St. Joseph, LA, to evaluate imazosulfuron programs involving rate, application timings, and tank mixes for PRE and POST broadleaf weed control in drill-seeded rice. Imazosulfuron showed residual activity against both Texasweed and hemp sesbania. PRE-applied imazosulfuron at 168 g ai ha−1and higher rates provided 83 to 93% Texasweed control at 4 WAP. At 12 WAP, Texasweed control with 168 g ha−1and higher rates was 92%. Hemp sesbania control with 168 g ha−1and higher rates was 86 to 89% at 4 WAP and 65 to 86% at 12 WAP. Imazosulfuron at 224 g ha−1applied EPOST provided 84 to 93% Texasweed control and 82 to 87% hemp sesbania control, and it was as effective as its tank mixture with bispyribac-sodium. When applied LPOST, four- to five-leaf Texasweed, imazosulfuron alone at 224 g ha−1was not effective against Texasweed and hemp sesbania, but did improve weed control when mixed with bispyribac-sodium at 17.6 g ai ha−1.


1998 ◽  
Vol 23 (1) ◽  
pp. 261-262
Author(s):  
M. A. Muegge ◽  
J. D. Barbour ◽  
W. C. Rice ◽  
P. A. Bollich

Abstract Dimilin was evaluated for control of adult rice water weevil at the Rice Research Station, Crowley, LA. Collectively levied plots, 5 X 20 ft, were arranged in a RBD with 4 blocks and 5 treatments with sub-sample nesting within the block X treatment effect. Fertilizer was incorporated pre-plant and applied broadcast 3 wk post-flood at 90 lb (13-13-13) and 50 lb (21-0-0) N-P-K/acre respectively. Plots were water seeded 29 May with pre-soaked ‘Cyprus’ rice at 138 lb seed/acre to Crowley silt loam and permanently flooded 8 Jun. Foliar applications of Dimilin 25 W were made at 0.25 or 0.125 lb (AI)/acre. Furadan 3 G was applied at RWW threshold (5 larvae/sample) at 0.6 lb (AI)/acre using a hand-held shaker. Dimilin 25 W applications were made using a CO2 backpack sprayer delivering 15 gpa at 16 psi with 80015VS flat-fan spray nozzles on a 3 ft boom. Rice water weevil eggs were counted from 5 randomly selected plants per plot beginning 2 d after flood then weekly until RWW threshold. Three randomly selected soil samples per plot were taken 26 Jun, 3 and 11 Jul using a 4 X 4 in core sampler. Individual samples were washed through a funnel, fitted with wire screen, into a 35-mesh screen sieve. Collected RWW larvae and pupae were floated in a saturated NaCl solution, and counted. Rough rice yield (lb/acre) was determined by hand-harvesting one random 3-ft2 sample per plot on 19 Sep. Moisture content of harvested grain was determined and standardized to 12% for determination of rough rice yield. RWW larval data were log transformed to improve normality. All data were subjected to ANOVA. Experimental and sampling error terms for the RWW larval data were tested for homogeneity of variances, and pooled error terms were used to test the treatment effect when appropriate. Protected least significant difference (LSD) was used for treatment mean separation.


2010 ◽  
Vol 20 (6) ◽  
pp. 977-982 ◽  
Author(s):  
Christopher A. Clark ◽  
Tara P. Smith ◽  
Donald M. Ferrin ◽  
Arthur Q. Villordon

Because sweetpotato (Ipomoea batatas) is vegetatively propagated, viruses and mutations can accumulate readily, which can lead to cultivar decline. Sweetpotato foundation seed programs in the United States maintain the integrity of commercial seed stock by providing virus-tested (VT) foundation seed to commercial producers. A survey was conducted in Louisiana from 2007 to 2009 to examine the performance and quality of the foundation seed after it had been integrated into commercial sweetpotato operations. G1 seed [grown 1 year after virus therapy in the foundation seed production field at the Sweet Potato Research Station, Louisiana State University Agricultural Center (LSU AgCenter), at Chase, LA] was used as a reference to compare the yield and virus incidence of growers' generation 2 (G2) and generation 3 (G3) seed roots (grown in the growers' seed production fields 1 or 2 years following the year of foundation seed production). Although yields of plants grown from G2 and G3 seed were 86.3% and 86.1% for U.S. No. 1 and 83.3% and 86.0% for total marketable, respectively, compared with the yields from G1 seed, they were not significantly different. Yield and virus incidence data suggest that seed quality may vary from year to year and from location to location. Results from this study suggest that producers are realizing yield benefits by incorporating VT foundation seed into their production schemes, but further benefits could be attained if ways to reduce re-infection with viruses can be found.


2020 ◽  
Vol 34 (4) ◽  
pp. 506-510
Author(s):  
Samer Y. Rustom ◽  
Eric P. Webster ◽  
Benjamin M. McKnight ◽  
David C. Blouin

AbstractA field study was conducted in 2015 and 2016 at the H. Rouse Caffey Rice Research Station near Crowley, Louisiana, to evaluate the interactions of quizalofop and a mixture of propanil plus thiobencarb applied sequentially or mixed to control weedy rice and barnyardgrass. Visual weed control evaluations occurred at 14, 28, and 42 d after treatment (DAT). Quizalofop was applied at 120 g ai ha−1 at 7, 3, and 1 d before and after propanil plus thiobencarb were each applied at 3,360 g ai ha−1. In addition, quizalofop was applied alone and in a mixture with propanil plus thiobencarb at day 0. Control of red rice ‘CL-111’ and ‘CLXL-745’ was greater than 91% when quizalofop was applied alone at day 0, similar to control for quizalofop applied 7, 3, and 1 d prior to propanil plus thiobencarb at all evaluation dates. Control of the same weeds treated with quizalofop plus propanil plus thiobencarb applied in a mixture at day 0 was 70% to 76% at each evaluation date, similar to quizalofop applied 1 or 3 d after propanil plus thiobencarb. A similar trend in control of barnyardgrass by 88% to 97% occurred when quizalofop was applied alone and by 48% to 53% at 14, 28, and 42 DAT when the mixture was used. ‘PVL01’ rough rice yield was 4,060 kg ha−1 when treated with quizalofop alone; however, yield was reduced to 3,180 kg ha−1 when it was treated with quizalofop mixed with propanil plus thiobencarb at day 0, similar to PVL01 rice treated with quizalofop 1 or 3 d following the propanil plus thiobencarb application.


Weed Science ◽  
2012 ◽  
Vol 60 (4) ◽  
pp. 593-599 ◽  
Author(s):  
Rakesh K. Godara ◽  
Billy J. Williams ◽  
James P. Geaghan

Experiments were conducted on potted plants under field conditions in 2007 and 2008 at the Louisiana State University Agricultural Center's Northeast Research Station near St. Joseph, LA, to evaluate Texasweed response to shade. Shade levels of 30, 50, 70, and 90% were achieved using 1.8-m by 1.8-m by 1.8-m tents built using 2.54-cm-diam polyvinyl chloride (PVC) pipe and polypropylene fabric. Shade had no effect on Texasweed emergence but significantly reduced its growth. There were significant growth differences between plants transferred directly and gradually to a given shade level. At 100 d after emergence, plants gradually exposed to 30, 50, 70, and 90% shade had 13, 22, 37, and 58% less total dry matter per plants, respectively, than did those in 0% shade. Texasweed height in 70 and 90% shade was increased by 28 and 20%, respectively. Texasweed seemed to mitigate the adverse effect of shade by increasing specific leaf area (SLA) and percentage of leaf biomass. Increasing SLA and the percentage of leaf biomass appears to be a strategy for efficient allocation of biomass for light capture and carbohydrate synthesis, which can be used for height increase until the plant rises above the crop canopy. Although fruit production was significantly reduced, Texasweed was able to reproduce in 90% shade.


2020 ◽  
Vol 81 ◽  
pp. 15-28
Author(s):  
VM Brown ◽  
MG Shirley ◽  
BD Keim ◽  
BD Marx ◽  
CG Lutz

This study examines the effect of meteorological variables, such as temperature, precipitation, cloud cover, and relative humidity on average monthly crawfish (Procambarus spp.) harvests at 6 research ponds located at the Aquaculture Research Station in Baton Rouge, Louisiana, USA, operated by the Louisiana State University Agricultural Center. Eight years (2006-2013) of harvest data were collected spanning February, March, and April of each year. Using multiple regression and model selection processes, the effect of meteorological variables was assessed at 3 different monthly lags (lag 0, 1, and 2) to determine which combination of variables best explained variance in average monthly crawfish pounds per trap (AMPT). The final model selected for lag 0 (adj-rsq = 0.73, p < 0.01), lag 1 (adj-rsq = 0.71, p < 0.01), and lag 2 (adj-rsq = 0.69, p < 0.01) generally included the same variables: monthly average low temperature, precipitation, and the preceding October/November precipitation (ON). Both monthly average low temperature and ON exhibited a statistically significant (p ≤ 0.05) positive effect on AMPT while controlling for other variables in the model, revealing the importance of warm temperatures and precipitation during October/November for crawfish harvests. Precipitation during the harvest month was not significant, but increased precipitation 1 and 2 mo before harvest significantly decreased AMPT. The number of hours with temperatures ≤0°C was also a significant variable negatively associated with AMPT 1 and 2 mo before harvest and, along with precipitation, could potentially be an early indicator for AMPT before harvests begin in southern Louisiana.


2019 ◽  
Vol 33 (6) ◽  
pp. 778-784 ◽  
Author(s):  
Matthew J. Osterholt ◽  
Eric P. Webster ◽  
David C. Blouin ◽  
Benjamin M. McKnight

AbstractA study was conducted in 2017 and 2018 at the H. Rouse Caffey Rice Research Station near Crowley, LA, to evaluate quizalofop at 120 g ai ha−1 applied independently or in a mixture with clomazone, pendimethalin, clomazone plus pendimethalin, or a prepackaged mixture of clomazone plus pendimethalin when PVLO1 rice reached the two- to three-leaf stage. A second application of quizalofop at 120 g ha−1 was applied 21 d after the initial application. At 7 days after treatment (DAT), antagonism of quizalofop occurred when mixed with clomazone at 334 g ai ha−1, clomazone at 334 g ai ha−1 plus pendimethalin at 810 g ai ha−1, or a prepackaged mixture of clomazone plus pendimethalin at 334 plus 810 g ai ha−1, respectively, when applied to barnyardgrass. At 7 DAT, a neutral interaction occurred with a mixture of quizalofop plus pendimethalin at 810 g ha−1. These data indicate the antagonism of quizalofop was overcome at 14, 28, and 42 DAT with a neutral interaction for barnyardgrass control, 94% to 98%, with all herbicide mixtures evaluated. A neutral interaction occurred for CL-111, CLXL-745, and red rice control when treated with all the herbicide mixtures evaluated across all evaluation dates. Rice yield decreased when not treated with the initial quizalofop application.


Sign in / Sign up

Export Citation Format

Share Document