scholarly journals ALS–Resistant Annual Sedge (Cyperus compressus) Confirmed in Turfgrass

Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Patrick E. McCullough ◽  
Jialin Yu ◽  
J. Scott McElroy ◽  
S. Chen ◽  
H. Zhang ◽  
...  

Acetolactate synthase (ALS) inhibitors are widely used for POST control of sedges in turfgrass. A suspected resistant (R) biotype of annual sedge was collected from a bermudagrass turf in Georgia with a history of exclusive use of halosulfuron. Research was conducted to evaluate the resistance level of this biotype to halosulfuron, efficacy of ALS-inhibiting herbicides and other mechanisms of action for control, and the molecular and physiological basis for resistance. In greenhouse experiments, the halosulfuron rate required to reduce shoot biomass 50% in comparison with the nontreated at 8 wk after treatment (WAT) were 8 and > 1,120 g ai ha−1for the S (susceptible) and R biotypes, respectively. Imazapic, sulfosulfuron, and trifloxysulfuron reduced biomass of the S biotype greater than 60% at 8 WAT, but biomass was reduced less than 20% for the R biotype. Glufosinate, glyphosate, MSMA, and sulfentrazone reduced shoot biomass of the R biotype by 93, 86, 97, and 45%, respectively. In laboratory experiments, the halosulfuron concentration required to inhibit ALS activity by 50% in excised leaf tissues was 5.8 and > 1,000 μM for the S and R biotypes, respectively. Gene sequencing of the R biotype revealed a Pro-197-Ser substitution that confers resistance to ALS inhibitors. This is the first report of ALS-inhibitor resistance in annual sedge and herbicide resistance in a sedge species from a turfgrass system.

Weed Science ◽  
2019 ◽  
Vol 67 (3) ◽  
pp. 273-280 ◽  
Author(s):  
Parsa Tehranchian ◽  
Vijay K. Nandula ◽  
Maor Matzrafi ◽  
Marie Jasieniuk

AbstractMultiple resistance to glyphosate, sethoxydim, and paraquat was previously confirmed in two Italian ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot] populations, MR1 and MR2, in northern California. Preliminary greenhouse studies revealed that both populations were also resistant to imazamox and mesosulfuron, both of which are acetolactate synthase (ALS)-inhibiting herbicides. In this study, three subpopulations, MR1-A (from seed of MR1 plants that survived a 16X rate of sethoxydim), MR1-P (from seed of MR1 plants that survived a 2X rate of paraquat), and MR2 (from seed of MR2 plants that survived a 16X rate of sethoxydim), were investigated to determine the resistance level to imazamox and mesosulfuron, evaluate other herbicide options for the control of these multiple resistant L. perenne ssp. multiflorum, and characterize the underlying ALS-inhibitor resistance mechanism(s). Based on LD50 values, the MR1-A, MR1-P, and MR2 subpopulations were 38-, 29-, 8-fold and 36-, 64-, and 3-fold less sensitive to imazamox and mesosulfuron, respectively, relative to the susceptible (Sus) population. Only MR1-P and MR2 plants were cross-resistant to rimsulfuron, whereas both MR1 subpopulations were cross-resistant to imazethapyr. Pinoxaden (ACCase inhibitor [phenylpyrazoline 'DEN']) only controlled MR2 and Sus plants at the labeled field rate. However, all plants were effectively controlled (>99%) with the labeled field rate of glufosinate. Based on I50 values, MR1-A, MR-P, and MR2 plants were 712-, 1,104-, and 3-fold and 10-, 18-, and 5-fold less responsive to mesosulfuron and imazamox, respectively, than the Sus plants. Sequence alignment of the ALS gene of resistant plants revealed a missense single-nucleotide polymorphism resulting in a Trp-574-Leu substitution in MR1-A and MR1-P plants, heterozygous in both, but not in the MR2 plants. An additional homozygous substitution, Asp-376-Glu, was identified in the MR1-A plants. Addition of malathion or piperonyl butoxide did not alter the efficacy of mesosulfuron on MR2 plants. In addition, the presence of 2,4-D had no effect on the response of mesosulfuron on the MR2 and Sus. These results suggest an altered target site is the mechanism of resistance to ALS inhibitors in MR1-A and MR1-P plants, whereas a non–target site based resistance apparatus is present in the MR2 plants.


2018 ◽  
Vol 32 (4) ◽  
pp. 353-359
Author(s):  
Jialin Yu ◽  
Patrick E. McCullough ◽  
Mark A. Czarnota

AbstractTall fescue is susceptible to injury from many acetolactate synthase (ALS) inhibitors used for broadleaf weed control in turfgrass. Florasulam is an ALS inhibitor that selectively controls broadleaf weeds in tall fescue, but the mechanisms for selectivity are not well understood. The objective of this research was to evaluate the physiological basis of tall fescue tolerance to florasulam. In greenhouse experiments, florasulam rates required to injure tall fescue 20% (I20) and white clover 80% (I80) measured 320 and 65 g ai ha–1, respectively. The I20 and I80 values of another ALS inhibitor, flucarbazone, on these species measured 33 and 275 g ai ha–1, respectively. In laboratory experiments, the time required to reach 50% foliar uptake for 14C-florasulam and 14C-flucarbazone measured 23 and 62 h for white clover, respectively, and >72 h for both herbicides in tall fescue. The half-lives of florasulam and flucarbazone in tall fescue were 15 and 40 h, respectively, whereas the half-life in white clover was >72 h for both herbicides. The concentrations of florasulam and flucarbazone required to inhibit ALS enzymes 50% in excised leaves of tall fescue measured >1,000 and 32 μM, respectively. The selectivity of florasulam for white clover control in tall fescue is associated with differential levels of absorption and metabolism between species. Tall fescue has faster metabolism and less ALS enzyme inhibition from florasulam as compared to a more injurious ALS inhibitor, flucarbazone, which contributes to the differential tolerance levels between these herbicides.


HortScience ◽  
2019 ◽  
Vol 54 (4) ◽  
pp. 701-705
Author(s):  
Te-Ming Tseng ◽  
Swati Shrestha ◽  
James D. McCurdy ◽  
Erin Wilson ◽  
Gourav Sharma

Annual bluegrass (Poa annua L.) is an annual weed that is particularly troublesome in managed turfgrass. It has been controlled conventionally with herbicides, including acetolactate synthase (ALS) inhibitors. However, resistance to ALS inhibitors has been documented throughout the southeastern United States since 2012. A rate–response trial was conducted to confirm and determine the resistance level of suspected resistant P. annua biotypes from Mississippi (Reunion), followed by DNA sequencing to determine whether the mechanism of resistance is a target-site mutatio n. In addition, a fitness assay was conducted together with a susceptible biotype to determine whether resistance to ALS inhibitors is associated with decreased fitness. Reunion was at least 45 times more resistant to foramsulfuron than the standard susceptible biotype based on I50 estimates [I50 is the rate of herbicide giving a 50% response (50% visual necrosis)], requiring a predicted 331 g a.i./ha foramsulfuron for 50% control. DNA sequencing results identified a Trp574-to-Leu mutation in the ALS gene of the Reunion biotype, which has been shown by other studies to confer resistance to ALS inhibitors. Measurement of fitness parameters among the Reunion and susceptible biotypes demonstrated reduced seed yield, tillering, and flowering time in the resistant Reunion biotype, suggesting that ALS inhibitor resistance is possibly correlated to decreased fitness in P. annua. Alternative methods to control P. annua need to be considered as a result of the evolution of herbicide-resistant biotypes. An integrated management strategy to control P. annua weeds will help prevent further evolution of resistance. Because this study evaluated only the target-site mechanism of resistance, it is also necessary to determine whether the resistant biotype has reduced uptake, translocation, or enhanced metabolism as additional mechanisms of resistance. Consequently, a fitness study encompassing a more comprehensive list of plant parameters will provide conclusions of the fitness costs associated with ALS inhibitor resistance in P. annua. Chemical names: Foramsulfuron {1-(4,6-dimethoxypyrimidin-2-yl)-3-[2-(dimethylcarbamoyl)-5-formamidophenylsulfonyl] urea}.


Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Terry R. Wright ◽  
Donald Penner

Acetolactate synthase (ALS)-inhibiting herbicide carryover in soil can severely affect sugarbeets grown in the year(s) following application. Two newly developed imidazolinone-resistant (IMI-R) sugarbeet somatic cell selections (Sir-13 and 93R30B) were examined for magnitude of resistance and extent of cross-resistance to other classes of ALS inhibitors and compared to a previously developed sulfonylurea-resistant (SU-R) selection, Sur. In vitro shoot culture tests indicated Sir-13 resistance was specific to imidazolinone (IMI) herbicides at approximately a 100-fold resistance compared to the sensitive control sugarbeet. Sur was 10,000-fold resistant to the sulfonylurea (SU) herbicide, chlorsulfuron, and 40-fold resistant to the triazolopyrimidine sulfonanilide (TP) herbicide, flumetsulam, but not cross-resistant to the IMI herbicides. 93R30B was selected for IMI-R from a plant homozygous for the SU-R allele,Sur, and displayed similar in vitro SU-R and TP-R as Sur, but also displayed a very high resistance to various IMI herbicides (400- to 3,600-fold). Compared to the sensitive control, Sir-13 was 300- and > 250-fold more resistant to imazethapyr and imazamox residues in soil, respectively. Response by whole plants to postemergence herbicide applications was similar to that observed in shoot cultures. Sir-13 exhibited > 100-fold resistance to imazethapyr as well as imazamox, and 93R30B showed > 250-fold resistance to both herbicides. 93R30B showed great enough resistance to imazamox to merit consideration of imazamox for use as a herbicide in these sugarbeets. Sir-13 showed a two- to threefold higher level of resistance in the homozygous vs. heterozygous state, indicating that like most ALS-inhibitor resistance traits, it was semidominantly inherited.


2012 ◽  
Vol 26 (1) ◽  
pp. 151-155 ◽  
Author(s):  
Hugh J. Beckie ◽  
Suzanne I. Warwick ◽  
Connie A. Sauder ◽  
Gina M. Kelln ◽  
Chris Lozinski

Cleavers species (false cleavers and catchweed bedstraw) are among the top 10 most abundant weeds across the prairie region of western Canada, and are increasing in relative abundance at the fastest rate since the 1970s. In 2008, two false cleavers populations from Tisdale and Choiceland, Saskatchewan, were suspected of acetolactate synthase (ALS) –inhibitor resistance. Dose-response experiments were conducted with the use of imazethapyr and florasulam, both ALS inhibitors, as well as fluroxypyr, a synthetic auxin. Additionally, a 1,954–base-pair region of theALSgene including sites known to conferALSresistance were sequenced. Both populations were highly resistant to imazethapyr (resistance factors greater than 100), one population (Tisdale) was highly resistant to florasulam (Choiceland population susceptible, although a second, larger screening of 200 individuals indicated low frequency [2%] florasulam resistance), and both populations were susceptible to fluroxypyr. All sequenced Tisdale individuals screened with imazethapyr posessed the Trp574Leu mutation. In contrast, three point mutations were found for Choiceland individuals sequenced: Ser653Asn, Trp574Leu, and Asp376Glu. TheseALStarget-site mutations have not been documented previously in this species.


1996 ◽  
Vol 10 (4) ◽  
pp. 835-841 ◽  
Author(s):  
Brian S. Manley ◽  
Henry P. Wilson ◽  
Thomas E. Hines

The effects of chlorimuron, imazaquin, imazethapyr, nicosulfuron, primisulfuron, and thifensulfuron were evaluated on a population of smooth pigweed in Painter, VA with no history of treatment with acetolactate synthase (ALS)-inhibitor herbicides. Imazethapyr and nicosulfuron gave the greatest smooth pigweed control, and subsequently were used in field and greenhouse studies to investigate susceptibility of smooth pigweed and livid amaranth populations to ALS-inhibitor herbicides. Approximately 5 million smooth pigweed plants from Painter were treated with imazethapyr or nicosulfuron from 1992 to 1994 and no ALS-inhibitor-resistant plants were identified. In the greenhouse, the response of smooth pigweed from Painter, VA, Marion, MD, and Oak Hall, VA and livid amaranth from Warren County, NJ to imazaquin or imazethapyr and nicosulfuron was investigated. Smooth pigweed from Marion and Oak Hall and livid amaranth from NJ had histories of treatment with ALS-inhibitors. Painter smooth pigweed control was 81 to 97% by imazethapyr and nicosulfuron while control of the Marion and Oak Hall populations was 3 and 18% by imazaquin at 560 and 1120 g ai/ha, respectively, and control by nicosulfuron at 35 g ai/ha was 50 to 73%. Control of livid amaranth from Warren County, NJ was 8 to 15% by imazethapyr at 560 g ai/ha, and was 30 to 58% by nicosulfuron at 35 g/ha.


Weed Science ◽  
2015 ◽  
Vol 63 (2) ◽  
pp. 399-407 ◽  
Author(s):  
Jiaqi Guo ◽  
Chance W. Riggins ◽  
Nicholas E. Hausman ◽  
Aaron G. Hager ◽  
Dean E. Riechers ◽  
...  

A waterhemp population (MCR) previously characterized as resistant to 4-hydroxyphenylpyruvate dioxygenase and photosystem II inhibitors demonstrated both moderate and high levels of resistance to acetolactate synthase (ALS) inhibitors. Plants from the MCR population exhibiting high resistance to ALS inhibitors contained the commonly found Trp574Leu ALS amino acid substitution, whereas plants with only moderate resistance did not have this substitution. A subpopulation (JG11) was derived from the MCR population in which the moderate-resistance trait was isolated from the Trp574Leu mutation. Results from DNA sequencing and ALS enzyme assays demonstrated that resistance to ALS inhibitors in the JG11 population was not due to an altered site of action. This nontarget-site ALS-inhibitor resistance was characterized with whole-plant dose–response experiments using herbicides from each of the five commercialized families of ALS-inhibiting herbicides. Resistance ratios ranging from 3 to 90 were obtained from the seven herbicides evaluated. Nontarget-site resistance to ALS has been rarely documented in eudicot weeds, and adds to the growing list of resistance traits evolved in waterhemp.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Patrick E. McCullough ◽  
Jialin Yu ◽  
Paul L. Raymer ◽  
Zhengbeng Chen

A goosegrass biotype with suspected resistance to acetyl-CoA carboxylase (ACCase) inhibitors was identified in Georgia. The objectives of this research were to evaluate the resistance level of this biotype to ACCase inhibitors, efficacy of various herbicide mechanisms of action for control, and the physiological and molecular basis of resistance. In greenhouse experiments, the rate of diclofop-methyl that reduced dry shoot biomass 50% (SR50) from the nontreated for the resistant (R) and susceptible (S) biotypes measured 4,100 and 221 g ai ha−1, respectively. The SR50for sethoxydim measured 615 and 143 g ai ha−1for the R and S biotype, respectively. The R biotype was cross resistant to clethodim, fenoxaprop, and fluazifop. The R and S biotypes were equally susceptible to foramsulfuron, glyphosate, monosodium methylarsenate (MSMA), and topramezone. In laboratory experiments, the two biotypes had similar foliar absorption of14C-diclofop-methyl. Both biotypes metabolized14C-diclofop-methyl to diclofop acid and a polar conjugate, but the R biotype averaged ∼2 times greater metabolism than the S biotype. Gene sequencing revealed an Asp-2078-Gly substitution in the ACCase of the R biotype that has previously conferred resistance to ACCase inhibitors. A second mutation was identified in the R biotype that yielded a Thr-1805-Ser substitution that has been previously reported, but is not associated with ACCase resistance in other species. Thus, the Asp-2078-Gly substitution is the basis for resistance to ACCase inhibitors for the R biotype. This is the first report of ACCase-inhibitor resistance in goosegrass from the United States and from a turfgrass system.


Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 240-247 ◽  
Author(s):  
William T. Molin ◽  
Vijay K. Nandula ◽  
Alice A. Wright ◽  
Jason A. Bond

Transfer of herbicide resistance among closely related weed species is a topic of growing concern. A spiny amaranth × Palmer amaranth hybrid was confirmed resistant to several acetolactate synthase (ALS) inhibitors including imazethapyr, nicosulfuron, pyrithiobac, and trifloxysulfuron. Enzyme assays indicated that the ALS enzyme was insensitive to pyrithiobac and sequencing revealed the presence of a known resistance conferring point mutation, Trp574Leu. Alignment of the ALS gene for Palmer amaranth, spiny amaranth, and putative hybrids revealed the presence of Palmer amaranth ALS sequence in the hybrids rather than spiny amaranth ALS sequences. In addition, sequence upstream of the ALS in the hybrids matched Palmer amaranth and not spiny amaranth. The potential for transfer of ALS inhibitor resistance by hybridization has been demonstrated in the greenhouse and in field experiments. This is the first report of gene transfer for ALS inhibitor resistance documented to occur in the field without artificial/human intervention. These results highlight the need to control related species in both field and surrounding noncrop areas to avoid interspecific transfer of resistance genes.


Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Patrick E. McCullough ◽  
J. Scott McElroy ◽  
Jialin Yu ◽  
Hui Zhang ◽  
Tyler B. Miller ◽  
...  

Metsulfuron is used for POST control of spotted spurge in many warm-season turfgrasses. A suspected resistant (R) biotype of spotted spurge was collected from turfgrass in Georgia with a history of exclusive metsulfuron use. Research was conducted to evaluate the resistance level of this biotype to metsulfuron, efficacy of other mechanisms of action for control, and the molecular basis for resistance. Compared with a susceptible (S) biotype, the R biotype required >90 and >135 times greater metsulfuron rates to reach 50% injury and reduce biomass 50% from the nontreated, respectively. The R biotype was also resistant to trifloxysulfuron but was injured equivalent to the S biotype from dicamba, glyphosate, and triclopyr. Gene sequencing of the R biotype revealed a Trp574to Leu substitution that has conferred resistance to acetolactate synthase (ALS) inhibitors in previous research. This is the first report of ALS resistance in spotted spurge. More importantly, this is the first report of a herbicide-resistant broadleaf weed from a turfgrass system in the United States.


Sign in / Sign up

Export Citation Format

Share Document