Herbicide programs to manage glyphosate/dicamba-resistant kochia (Bassia scoparia) in glyphosate/dicamba-resistant soybean

2020 ◽  
Vol 34 (4) ◽  
pp. 568-574
Author(s):  
Ramawatar Yadav ◽  
Vipan Kumar ◽  
Prashant Jha

AbstractEvolution of kochia resistance to glyphosate and dicamba is a concern for growers in the US Great Plains. An increasing use of glyphosate and dicamba with the widespread adoption of glyphosate/dicamba-resistant (GDR) soybean in recent years may warrant greater attention. Long-term stewardship of this new stacked-trait technology will require the implementation of diverse weed control strategies, such as the use of soil-residual herbicides (PRE) aimed at effective control of GDR kochia. Field experiments were conducted in Huntley, MT, in 2017 and 2018, and Hays, KS, in 2018 to determine the effectiveness of various PRE herbicides applied alone or followed by (fb) a POST treatment of glyphosate plus dicamba for controlling GDR kochia in GDR soybean. Among PRE herbicides tested, sulfentrazone provided complete (100%), season-long control of GDR kochia at both sites. In addition, PRE fb POST programs tested in this study brought 71% to 100% control of GDR kochia throughout the season at both sites. Pyroxasulfone applied PRE resulted in 57% to 70% control across sites at 9 to 10 wk after PRE (WAPRE). However, mixing dicamba with pyroxasulfone improved control up to 25% at both sites. Kochia plants surviving pyroxasulfone applied PRE alone produced 2,530 seeds m−2 compared with pyroxasulfone + dicamba (230 seeds m−2) at the Montana site. No differences in soybean grain yields were observed with PRE alone or PRE fb POST treatments at the Montana site; however, dicamba, pyroxasulfone, and pendimethalin + dimethenamid-P applied PRE brought lower grain yield (1,150 kg ha−1) compared to all other tested programs at the Kansas site. In conclusion, effective PRE or PRE fb POST (two-pass) programs tested in this research should be proactively utilized by the growers to manage GDR kochia in GDR soybean.

Weed Science ◽  
2019 ◽  
Vol 67 (1) ◽  
pp. 57-67 ◽  
Author(s):  
O. Adewale Osipitan ◽  
J. Anita Dille ◽  
Muthukumar V. Bagavathiannan ◽  
Stevan Z. Knezevic

AbstractKochia [Bassia scoparia(L.) A. J. Scott] is a problematic weed species across the Great Plains, as it is spreading fast and has developed herbicide-resistant biotypes. It is imperative to understand key life-history stages that promote population expansion ofB. scopariaand control strategies that would provide effective control of these key stages, thereby reducing population growth. Diversifying weed control strategies has been widely recommended for the management of herbicide-resistant weeds. Therefore, the objectives of this study were to develop a simulation model to assess the population dynamics ofB. scopariaand to evaluate the effectiveness of diverse weed control strategies on long-term growth rates ofB. scopariapopulations. The model assumed the existence of a glyphosate-resistant (GR) biotype in theB. scopariapopulation, but at a very low proportion in a crop rotation that included glyphosate-tolerant corn (Zea maysL.) and soybean [Glycine max(L.) Merr.]. The parameter estimates used in the model were obtained from various ecological and management studies onB. scoparia. Model simulations indicated that seedling recruitment and survival to seed production were more important than seedbank persistence forB. scopariapopulation growth rate. Results showed that a diversified management program, including glyphosate, could provide excellent control ofB. scopariapopulations and potentially eliminate already evolved GRB. scopariabiotypes within a given location. The most successful scenario was a diverse control strategy that included one or two preplant tillage operations followed by preplant or PRE application of herbicides with residual activities and POST application of glyphosate; this strategy reduced seedling recruitment, survival, and seed production during the growing season, with tremendous negative impacts on long-term population growth and resistance risk inB. scoparia.


2019 ◽  
Vol 33 (2) ◽  
pp. 342-348
Author(s):  
Vipan Kumar ◽  
Ryan P. Engel ◽  
Randall Currie ◽  
Prashant Jha ◽  
Phillip W. Stahlman ◽  
...  

AbstractDicamba-resistant (DR) kochia is an increasing concern for growers in the US Great Plains, including Kansas. Greenhouse and field experiments (Garden City and Tribune, KS, in the 2014 to 2015 growing season) were conducted to characterize the dicamba resistance levels in two recently evolved DR kochia accessions collected from fallow fields (wheat–sorghum–fallow rotation) near Hays, KS, and to determine the effectiveness of various PRE herbicide tank mixtures applied in fall or spring prior to the fallow year. Dicamba dose–response studies indicated that the KS-110 and KS-113 accessions had 5- to 8-fold resistance to dicamba, respectively, relative to a dicamba-susceptible (DS) accession. In separate field studies, atrazine-based PRE herbicide tank mixtures, dicamba + pendimethalin + sulfentrazone, and metribuzin + sulfentrazone when applied in the spring had excellent kochia control (85% to 95%) for 3 to 4 mo at the Garden City and Tribune sites. In contrast, kochia control with those PRE herbicide tank mixtures when applied in the fall did not exceed 79% at the later evaluation dates. In conclusion, the tested kochia accessions from western Kansas had evolved moderate to high levels of resistance to dicamba. Growers should utilize these effective PRE herbicide tank mixtures (multiple sites of action) in early spring to manage kochia seed bank during the summer fallow phase of this 3-yr crop rotation (wheat–corn/sorghum–fallow) in the Central Great Plains.


Crop Science ◽  
2016 ◽  
Vol 56 (5) ◽  
pp. 2223-2236 ◽  
Author(s):  
Sarah M. Grogan ◽  
Josh Anderson ◽  
P. Stephen Baenziger ◽  
Katherine Frels ◽  
Mary J. Guttieri ◽  
...  

2006 ◽  
Vol 20 (3) ◽  
pp. 622-626 ◽  
Author(s):  
Patrick W. Geier ◽  
Phillip W. Stahlman ◽  
John C. Frihauf

Field experiments were conducted during 2003 and 2004 to compare the effectiveness of KIH-485 and S-metolachlor for PRE weed control in no-tillage and conventional-tillage corn. Longspine sandbur control increased as KIH-485 or S-metolachlor rates increased in conventional-tillage corn, but control did not exceed 75% when averaged over experiments. Both herbicides controlled at least 87% of green foxtail with the exception of no-tillage corn in 2004, when KIH-485 was more effective than S-metolachlor at lower rates. Palmer amaranth control ranged from 85 to 100% in 2003 and 80 to 100% in 2004, with the exception of only 57 to 76% control at the lowest two S-metolachlor rates in 2004. Puncturevine control exceeded 94% with all treatments in 2003. In 2004, KIH-485 controlled 86 to 96% of the puncturevine, whereas S-metolachlor controlled only 70 to 81%. Mixtures of atrazine with KIH-485 or S-metolachlor generally provided the most effective control of broadleaf weeds studied.


2015 ◽  
Vol 29 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Vipan Kumar ◽  
Prashant Jha

Occurrence of glyphosate-resistant (GR) canola volunteers in GR sugar beet is a management concern for growers in the Northern Great Plains. Field experiments were conducted at the Southern Agricultural Research Center near Huntley, MT, in 2011 and 2012 to evaluate effective herbicide programs to control volunteer GR canola in GR sugar beet. Single POST application of triflusulfuron methyl alone at the two-leaf stage of sugar beet was more effective at 35 compared with 17.5 g ai ha−1. However, rate differences were not evident when triflusulfuron methyl was applied as a sequential POST (two-leaf followed by [fb] six-leaf stage of sugar beet) program (17.5 fb 17.5 or 35 fb 35 g ha−1). Volunteer GR canola plants in the sequential POST triflusulfuron methyl–containing treatments produced little biomass (11 to 15% of nontreated plots) but a significant amount of seeds (160 to 661 seeds m−2). Ethofumesate (4,200 g ai ha−1) PRE followed by sequential POST triflusulfuron methyl (17.5 or 35 g ha−1) provided effective control (94 to 98% at 30 d after treatment [DAT]), biomass reduction (97%), and seed prevention of volunteer GR canola. There was no additional advantage of adding either desmedipham + phenmedipham + ethofumesate premix (44.7 g ha−1) or ethofumesate (140 g ha−1) to the sequential POST triflusulfuron methyl–only treatments. The sequential POST ethofumesate-only (140 fb 140 g ha−1) treatment provided poor volunteer GR canola control at 30 DAT, and the noncontrolled plants produced 6,361 seeds m−2, which was comparable to the nontreated control (7,593 seeds m−2). Sequential POST triflusulfuron methyl–containing treatments reduced GR sugar beet root and sucrose yields to 18 and 20%, respectively. Consistent with GR canola control, sugar beet root and sucrose yields were highest (95 and 91% of hand-weeded plots, respectively) when the sequential POST triflusulfuron methyl–containing treatments were preceded by ethofumesate (4,200 g ha−1) PRE. Growers should utilize these effective herbicide programs to control volunteer GR canola in GR sugar beet. Because of high canola seed production potential, as evident from this research, control efforts should be aimed at preventing seed bank replenishment of the GR canola volunteers.


2004 ◽  
Vol 52 (2) ◽  
pp. 199-203 ◽  
Author(s):  
G. Singh ◽  
R. S. Jolly

Two field experiments were conducted during the kharif (rainy) season of 1999 and 2000 on a loamy sand soil to study the effect of various pre- and post-emergence herbicides on the weed infestation and grain yield of soybean. The presence of weeds in the weedy control plots resulted in 58.8 and 58.1% reduction in the grain yield in the two years compared to two hand weedings (HW) at 30 and 45 days after sowing (DAS), which gave grain yields of 1326 and 2029 kg ha-1. None of the herbicides was significantly superior to the two hand weedings treatment in influencing the grain yield. However, the pre-emergence application of 0.75 kg ha-1 S-metolachlor, and 0.5 kg ha-1 pendimethalin (pre-emergence) + HW 30 DAS were at par or numerically superior to this treatment. There was a good negative correlation between the weed dry matter at harvest and the grain yield of soybean, which showed that effective weed control is necessary for obtaining higher yields of soybean.


Crop Science ◽  
2016 ◽  
Vol 57 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Smit Dhakal ◽  
Chor-Tee Tan ◽  
Li Paezold ◽  
Maria P. Fuentealba ◽  
Jackie C. Rudd ◽  
...  

Author(s):  
Brandt Berghuis ◽  
Andrew Friskop ◽  
Michelle Gilley ◽  
Jessica Halvorson ◽  
Bryan Hansen ◽  
...  

Sunflower rust, caused by Puccinia helianthi, is an economically and globally important disease of sunflower. Two types of sunflowers are produced in the US Northern Great Plains; the oilseed type and the confection type. Although approximately 80% of the acreage in this region is planted as the oilseed type sunflower, fungicide efficacy and timing studies have been conducted primarily on the more rust-susceptible confection type. A total of ten sunflower rust efficacy field experiments were conducted on oilseed type and confectionary type hybrid trials from 2016-2018. Eleven fungicides from three FRAC groups were evaluated for efficacy and protection of yield. Severity differences among fungicide treatments were identified in both confection and oilseed type sunflower trials. A combined analysis of all confection field trials (five) indicated that rust severity was lower in all fungicide treatments as compared to the non-treated control. Despite rust severity levels below the fungicide action threshold for confection sunflower, seven of the eleven fungicide treatments had yield higher than the non-treated control. In oilseed trials, rust severity was lower in all fungicide treatments as compared to the non-treated control, similar to the findings of the confection type. Rust severity was too low to detect yield differences in oilseed trials. Additional work is needed to elucidate yield-loss potential on oilseed type sunflower and refine the fungicide action threshold on confection type sunflower.


Pertussis ◽  
2018 ◽  
pp. 6-25
Author(s):  
Pejman Rohani ◽  
Samuel V. Scarpino

Resolving the long-term, population-level consequences of changes in pertussis epidemiology, arising from bacterial evolution, shifts in vaccine-induced immunity, or changes in surveillance, are key challenges for devising effective control strategies. This chapter reviews some of the key features of pertussis epidemiology, together with the underlying epidemiological principles that set the context for their interpretation. These include the relationship between the age distribution of cases and pertussis transmission potential, the impact of vaccine uptake on incidence, periodicity and age incidence, as well as spatially explicit recurrent pertussis epidemics and associated extinction frequency. This review highlights some of the predictable and consistent aspects of pertussis epidemiology (e.g. the systematic increase in the inter-epidemic period with the introduction of whole-cell vaccines) and a number of important heterogeneities, including variations in contemporary patterns of incidence and geographic spread.


Sign in / Sign up

Export Citation Format

Share Document