Evaluation of sequential applications of quizalofop-p-ethyl and propanil plus thiobencarb in acetyl-coA carboxylase inhibitor–resistant rice

2020 ◽  
Vol 34 (4) ◽  
pp. 506-510
Author(s):  
Samer Y. Rustom ◽  
Eric P. Webster ◽  
Benjamin M. McKnight ◽  
David C. Blouin

AbstractA field study was conducted in 2015 and 2016 at the H. Rouse Caffey Rice Research Station near Crowley, Louisiana, to evaluate the interactions of quizalofop and a mixture of propanil plus thiobencarb applied sequentially or mixed to control weedy rice and barnyardgrass. Visual weed control evaluations occurred at 14, 28, and 42 d after treatment (DAT). Quizalofop was applied at 120 g ai ha−1 at 7, 3, and 1 d before and after propanil plus thiobencarb were each applied at 3,360 g ai ha−1. In addition, quizalofop was applied alone and in a mixture with propanil plus thiobencarb at day 0. Control of red rice ‘CL-111’ and ‘CLXL-745’ was greater than 91% when quizalofop was applied alone at day 0, similar to control for quizalofop applied 7, 3, and 1 d prior to propanil plus thiobencarb at all evaluation dates. Control of the same weeds treated with quizalofop plus propanil plus thiobencarb applied in a mixture at day 0 was 70% to 76% at each evaluation date, similar to quizalofop applied 1 or 3 d after propanil plus thiobencarb. A similar trend in control of barnyardgrass by 88% to 97% occurred when quizalofop was applied alone and by 48% to 53% at 14, 28, and 42 DAT when the mixture was used. ‘PVL01’ rough rice yield was 4,060 kg ha−1 when treated with quizalofop alone; however, yield was reduced to 3,180 kg ha−1 when it was treated with quizalofop mixed with propanil plus thiobencarb at day 0, similar to PVL01 rice treated with quizalofop 1 or 3 d following the propanil plus thiobencarb application.

2019 ◽  
Vol 34 (2) ◽  
pp. 180-187
Author(s):  
L. Connor Webster ◽  
Eric P. Webster ◽  
David C. Blouin ◽  
Benjamin M. McKnight

AbstractAcetyl co-enzyme A carboxylase (ACCase)-resistant rice allows quizlaofop-p-ethyl to be applied as a POST control of troublesome grass weeds. A field study was conducted in 2017 and 2018 at the H. Rouse Caffey Rice Research Station near Crowley, LA, to evaluate the influence of a crop oil concentrate (COC), a silicon-based surfactant plus a nitrogen source (SNS), or a high-concentrate COC (HCOC) in overcoming the grass weed control antagonism of quizalofop-p-ethyl when mixed with bispyribac-Na. Quizalofop-p-ethyl was applied at 120 g ai ha−1, bispyribac-Na was applied at 34 g ai ha−1, and all adjuvants were applied at 1% vol/vol. Antagonistic interactions were observed at 14 d after treatment (DAT) when quizalofop-p-ethyl was mixed with bispyribac-Na with no adjuvant for control of barnyardgrass, the non–ACCase-tolerant rice cultivars ‘CL-111’ and ‘CLXL-745’, and red rice. At 14 DAT, antagonism of quizalofop-p-ethyl for control of barnyardgrass was observed when mixed with bispyribac-Na plus COC, SNS, or HCOC, with an observed control of 43%, 63%, and 86%, respectively, compared with an expected control of 95% for quizalofop-p-ethyl alone. However, the antagonism of quizalofop-p-ethyl when mixed with bispyribac-Na plus HCOC for barnyardgrass control at 14 DAT was overcome by 28 DAT, with an observed control of 91%, compared with an expected control of 97%. Synergistic or neutral interactions were observed at 14 and 28 DAT when COC, SNS, or HCOC was added to a mixture of quizalofop-p-ethyl plus bispyribac-Na for CL-111, CLXL-745, and red rice control. According to the results of this study, HCOC is the most effective adjuvant for quizalofop-p-ethyl and bispyribac-Na mixtures for control of weedy rice and barnyardgrass.


2020 ◽  
Vol 34 (6) ◽  
pp. 814-817 ◽  
Author(s):  
Tameka L. Sanders ◽  
Jason A. Bond ◽  
Benjamin H. Lawrence ◽  
Bobby R. Golden ◽  
Thomas W. Allen ◽  
...  

AbstractFlorpyrauxifen-benzyl and quizalofop were available for POST applications in 2018; however, little is known about the response of acetyl-CoA carboxylase (ACCase)–resistant rice cultivars and advanced lines to POST herbicides. A field study was conducted in 2017 and 2018 at Stoneville, MS, to characterize the response of ACCase-resistant rice cultivars and advanced lines to POST applications of florpyrauxifen-benzyl. The imidazolinone-resistant (IR) rice cultivars ‘CL163’ and ‘CLXL 745’, and ACCase-resistant rice cultivars ‘PVL01’, ‘PVL013’, ‘PVL024-B’, ‘PVL038’, ‘PVL080’, and ‘PVL081’were treated with florpyrauxifen-benzyl at 0 (nontreated control for each cultivar) and 58 g ai ha–1 at the four-leaf to one-tiller (LPOST) growth stage. At 14 d after treatment (DAT), PVL01 was injured 5% to 6% greater than CLXL 745, PVL013, and PVL081; however, injury was ≤10% at that evaluation for all cultivars. Similarly, injury was ≤13% for all cultivars 28 DAT. Mature heights were reduced for all cultivars except PVL013 and PVL081. Rough rice yield was ≥100% of the control for all cultivars except PVL081, PVL013, and CL163. Results suggest that florpyrauxifen-benzyl can safely be applied POST to rice cultivars grown in Mississippi as well as ACCase-resistant cultivars that are currently under development.


2018 ◽  
Vol 32 (3) ◽  
pp. 297-303 ◽  
Author(s):  
Samer Y. Rustom ◽  
Eric P. Webster ◽  
David C. Blouin ◽  
Benjamin M. McKnight

AbstractA field study was conducted in 2015 and 2016 at the H. Rouse Caffey Rice Research Station (RRS) to evaluate antagonistic, synergistic, or neutral interactions of quizalofop when mixed with ALS-inhibiting herbicides labeled in rice production. Quizalofop was applied at 120 g ai ha−1. Mixture herbicides included penoxsulam at 40 g ai ha−1, penoxsulam+triclopyr at 352 g ai ha−1, halosulfuron at 53 g ai ha−1, bispyribac at 34 g ai ha−1, orthosulfamuron+halosulfuron at 94 g ai ha−1, orthosulfamuron+quinclorac at 491 g ai ha−1, imazosulfuron at 211 g ai ha−1, and bensulfuron at 43 g ai ha−1. All ALS herbicides mixed with quizalofop indicated antagonistic responses for red rice, CL-111, CLXL 745, or barnyardgrass control at either 14 or 28 days after treatment (DAT). At 28 DAT, quizalofop mixed with penoxsulam or bispyribac controlled barnyardgrass 34 to 38%, compared with an expected control of 97%. In addition, these same mixtures controlled red rice, CL-111, and CLXL-745 61 to 67% at 28 DAT compared with an expected control of 96 to 97%. A second application of quizalofop at 120 g ha−1was applied at 28 DAT. At 42 DAT, neutral responses were indicated for all mixtures except with quizalofop mixed with penoxsulam containing products.


2019 ◽  
Vol 34 (4) ◽  
pp. 498-505
Author(s):  
Tameka L. Sanders ◽  
Jason A. Bond ◽  
Benjamin H. Lawrence ◽  
Bobby R. Golden ◽  
Thomas W. Allen ◽  
...  

AbstractRice with enhanced tolerance to herbicides that inhibit acetyl coA carboxylase (ACCase) allows POST application of quizalofop, an ACCase-inhibiting herbicide. Two concurrent field studies were conducted in 2017 and 2018 near Stoneville, MS, to evaluate control of grass (Grass Study) and broadleaf (Broadleaf Study) weeds with sequential applications of quizalofop alone and in mixtures with auxinic herbicides applied in the first or second application. Sequential treatments of quizalofop were applied at 119 g ai ha−1 alone and in mixtures with labeled rates of auxinic herbicides to rice at the two- to three-leaf (EPOST) or four-leaf to one-tiller (LPOST) growth stages. In the Grass Study, no differences in rice injury or control of volunteer rice (‘CL151’ and ‘Rex’) were detected 14 and 28 d after last application (DA-LPOST). Barnyardgrass control at 14 and 28 DA-LPOST with quizalofop applied alone or with auxinic herbicides EPOST was ≥93% for all auxinic herbicide treatments except penoxsulam plus triclopyr. Barnyardgrass control was ≥96% with quizalofop applied alone and with auxinic herbicides LPOST. In the Broadleaf Study, quizalofop plus florpyrauxifen-benzyl controlled more Palmer amaranth 14 DA-LPOST than other mixtures with auxinic herbicides, and control with this treatment was greater EPOST compared with LPOST. Hemp sesbania control 14 DA-LPOST was ≤90% with quizalofop plus quinclorac LPOST, orthosulfamuron plus quinclorac LPOST, and triclopyr EPOST or LPOST. All mixtures except quinclorac and orthosulfamuron plus quinclorac LPOST controlled ivyleaf morningglory ≥91% 14 DA-LPOST. Florpyrauxifen-benzyl or triclopyr were required for volunteer soybean control >63% 14 DA-LPOST. To optimize barnyardgrass control and rice yield, penoxsulam plus triclopyr and orthosulfamuron plus quinclorac should not be mixed with quizalofop. Quizalofop mixtures with auxinic herbicides are safe and effective for controlling barnyardgrass, volunteer rice, and broadleaf weeds in ACCase-resistant rice, and the choice of herbicide mixture could be adjusted based on weed spectrum in the treated field.


2020 ◽  
pp. 1-5
Author(s):  
Tameka L. Sanders ◽  
Jason A. Bond ◽  
Benjamin H. Lawrence ◽  
Bobby R. Golden ◽  
Thomas W. Allen ◽  
...  

Abstract Information on performance of sequential treatments of quizalofop-P-ethyl with florpyrauxifen-benzyl on rice is lacking. Field studies were conducted in 2017 and 2018 in Stoneville, MS, to evaluate sequential timings of quizalofop-P-ethyl with florpyrauxifen-benzyl included in preflood treatments of rice. Quizalofop-P-ethyl treatments were no quizalofop-P-ethyl; sequential applications of quizalofop-P-ethyl at 120 g ha−1 followed by (fb) 120 g ai ha−1 applied to rice in the 2- to 3-leaf (EPOST) fb the 4-leaf to 1-tiller (LPOST) growth stages or LPOST fb 10 d after flooding (PTFLD); quizalofop-P-ethyl at 100 g ha−1 fb 139 g ha−1 EPOST fb LPOST or LPOST fb PTFLD; quizalofop-P-ethyl at 139 g ha−1 fb 100 g ha−1 EPOST fb LPOST and LPOST fb PTFLD; and quizalofop-P-ethyl at 85 g ha−1 fb 77 g ha−1 fb 77 g ha−1 EPOST fb LPOST fb PTFLD. Quizalofop-P-ethyl was applied alone and in mixture with florpyrauxifen-benzyl at 29 g ai ha−1 LPOST. Visible rice injury 14 d after PTFLD (DA-PTFLD) was no more than 3%. Visible control of volunteer rice (‘CL151’ and ‘Rex’) 7 DA-PTFLD was similar and at least 95% for each quizalofop-P-ethyl treatment. Barnyardgrass control with quizalofop-P-ethyl at 120 fb 120 g ha−1 LPOST fb PTFLD was greater (88%) in mixture with florpyrauxifen-benzyl. The addition of florpyrauxifen-benzyl to quizalofop-P-ethyl increased rough rice yield when quizalofop-P-ethyl was applied at 100 g ha−1 fb 139 g ha−1 EPOST fb LPOST. Sequential applications of quizalofop-P-ethyl at 120 g ha−1 fb 120 g ha−1 EPOST fb LPOST, 100 g ha−1 fb 139 g ha−1 EPOST fb LPOST, or 139 g ha−1 fb 100 g ha−1 EPOST fb LPOST controlled grass weed species. The addition of florpyrauxifen-benzyl was not beneficial for grass weed control. However, because quizalofop-P-ethyl does not control broadleaf weeds, florpyrauxifen-benzyl could provide broad-spectrum weed control in acetyl coenzyme A carboxylase–resistant rice.


2021 ◽  
pp. 1-24
Author(s):  
L. Connor Webster ◽  
Eric P. Webster ◽  
David C. Blouin ◽  
Benjamin M. McKnight

A field study was conducted in 2017 and 2018 at the LSU Agricultural Center H. Rouse Caffey Rice Research Station (RRS) near Crowley, LA. to evaluate the impact of reduced rates of halosulfuron on quizalofop activity in Louisiana rice production. Halosulfuron and a prepackaged mixture of halosulfuron plus thifensulfuron were evaluated at 0, 17, 35, or 53 g ai ha−1 and 34 or 53 g ai ha−1, respectively, in a mixture with quizalofop at 120 g ai ha-1. Control of (%) of barnyardgrass and red rice as well as two non-ACCase resistant rice lines, CL-111 and CLXL-745, were recorded at 14 and 28 d after treatment (DAT). The red rice, CL-111, and CLXL-745 represented a weedy rice population. Across all species evaluated at 14 DAT, all halosulfuron and halosulfuron plus thifensulfuron containing mixtures resulted in antagonism with an observed control of 79 to 90%, compared to an expected control of 96 to 99%. At 28 DAT, all halosulfuron containing mixtures resulted in neutral interactions for barnyardgrass control. Quizalofop mixed with halosulfuron plus thifensulfuron at the lower rate of 34 g ha−1 was able to overcome the antagonism compared with the higher rate of 53 g ha−1 for barnyardgrass control at 28 DAT. Both the high and the low rate of halosulfuron plus thifensulfuron resulted in antagonistic interaction for red rice, CL-111, and CLXL-745 control at 28 DAT. This research suggests that mixing quizalofop with halosulfuron plus thifensulfuron should be avoided, especially at the higher rate of 53 g ha−1.


2011 ◽  
Vol 25 (2) ◽  
pp. 204-211 ◽  
Author(s):  
Tyler P. Carlson ◽  
Eric P. Webster ◽  
Michael E. Salassi ◽  
Justin B. Hensley ◽  
David C. Blouin

Field studies were conducted in 2008 and 2009 near Crowley, Louisiana, to evaluate the addition of different propanil formulations in mixture with a standard imazethapyr program of 70 g ai ha−1early postemergence followed by (fb) 70 g ha−1late postemergence. Weeds evaluated included red rice, barnyardgrass, Texasweed, and alligatorweed. Control of all species with treatments, including a propanil formulation applied at 3,400 g ai ha−1, was equivalent to, or greater than, the standard imazethapyr program. Rough rice yield and economic returns were maximized when the propanil formulations of Propanil 1 or Propanil 3 were mixed with imazethapyr in the early postemergence applications. The addition of propanil to imazethapyr increased rough rice yield and economic returns because of improved weed control.


1998 ◽  
Vol 23 (1) ◽  
pp. 261-262
Author(s):  
M. A. Muegge ◽  
J. D. Barbour ◽  
W. C. Rice ◽  
P. A. Bollich

Abstract Dimilin was evaluated for control of adult rice water weevil at the Rice Research Station, Crowley, LA. Collectively levied plots, 5 X 20 ft, were arranged in a RBD with 4 blocks and 5 treatments with sub-sample nesting within the block X treatment effect. Fertilizer was incorporated pre-plant and applied broadcast 3 wk post-flood at 90 lb (13-13-13) and 50 lb (21-0-0) N-P-K/acre respectively. Plots were water seeded 29 May with pre-soaked ‘Cyprus’ rice at 138 lb seed/acre to Crowley silt loam and permanently flooded 8 Jun. Foliar applications of Dimilin 25 W were made at 0.25 or 0.125 lb (AI)/acre. Furadan 3 G was applied at RWW threshold (5 larvae/sample) at 0.6 lb (AI)/acre using a hand-held shaker. Dimilin 25 W applications were made using a CO2 backpack sprayer delivering 15 gpa at 16 psi with 80015VS flat-fan spray nozzles on a 3 ft boom. Rice water weevil eggs were counted from 5 randomly selected plants per plot beginning 2 d after flood then weekly until RWW threshold. Three randomly selected soil samples per plot were taken 26 Jun, 3 and 11 Jul using a 4 X 4 in core sampler. Individual samples were washed through a funnel, fitted with wire screen, into a 35-mesh screen sieve. Collected RWW larvae and pupae were floated in a saturated NaCl solution, and counted. Rough rice yield (lb/acre) was determined by hand-harvesting one random 3-ft2 sample per plot on 19 Sep. Moisture content of harvested grain was determined and standardized to 12% for determination of rough rice yield. RWW larval data were log transformed to improve normality. All data were subjected to ANOVA. Experimental and sampling error terms for the RWW larval data were tested for homogeneity of variances, and pooled error terms were used to test the treatment effect when appropriate. Protected least significant difference (LSD) was used for treatment mean separation.


2012 ◽  
Vol 48 (4) ◽  
pp. 587-596 ◽  
Author(s):  
ANDRÉ ANDRES ◽  
GERMANI CONCENÇO ◽  
GIOVANI THEISEN ◽  
LEANDRO GALON ◽  
FRANCO TESIO

SUMMARYThe weedy variety ofOryza sativaoccurs in several rice cultivation areas reducing both grain yield and quality. Prevention and crop rotation are considered the basic means to reduce its presence. Weed control in sorghum is generally attained with atrazine. In this study, the efficacy of both chemical and mechanical methods for control, under different soil tillage conditions, of weedy rice and barnyardgrass during sorghum cultivation was evaluated with the aim to reduce the application rate of atrazine. In the case of chemical control, the atrazine rate (1000, 1500, 2000, 2500 and 3000 ga.i.ha−1) and application timing (pre- and post-emergence) were assessed. With the mechanical control method, the number of interventions (inter-row hoeing with sorghum at 3, 4–5 and 6–8 leaves) to avoid weed competition was determined. The effect of the tillage system on weed population was investigated comparing conventional (ploughing), minimum-tillage (disc harrowing) and sod seeding (no-tillage) in combination with pre- and post-emergence herbicide treatments. The results showed that efficient control of weedy rice and barnyardgrass was achieved in lowlands with sorghum in rotation with rice. Both chemical and mechanical methods of weed control in sorghum gave a level of efficiency higher than 60%. The application of atrazine was more efficient in pre-emergence application, rather than in post-emergence treatments, in all soil tillage systems tested. On both weed species, the most suitable application rate was the pre-emergence treatment with 1500 ga.i.ha−1, and the adoption of higher rates did not significantly increase the herbicidal efficacy. The adoption of two or three mechanical interventions resulted in sorghum yield higher than the chemical post-emergence application, and similar to the application of atrazine in pre-emergence. Higher yield results were in accordance to greater weed control, being obtained in the conventional tillage system.


2021 ◽  
Vol 51 (4) ◽  
Author(s):  
Rubens Antonio Polito ◽  
Larissa Pasqualotto ◽  
Rafael Dysarz ◽  
Rafaela Cinelli ◽  
Tamara Heck ◽  
...  

ABSTRACT: This study aimed to evaluate the antagonistic effect of the mixture ofacetyl coenzyme-A carboxylase (ACCase) enzyme inhibiting herbicides and auxin herbicides in Lolium multiflorum and to determine mechanisms to mitigate this possible effect. The first experiments were conducted by associating the herbicide clethodim (108 g a.i. ha−1), quizalofop-p-ethyl (54 g a.i. ha−1), and clethodim + quizalofop-p-ethyl (108+54 g a.i. ha−1) with 2,4-D (1005 g a.e. ha−1) or triclopyr (720 g a.e. ha−1), in addition to the sole application of the respective graminicides. Another experiment included clethodim (54; 81; 108; 162; 216 g a.i. ha−1), quizalofop-p-ethyl (27; 40.5; 54; 81; 108 g a.i. ha−1), and clethodim + quizalofop-p-ethyl (54+27; 81+40.5; 108+54; 162+81; 216+108 g a.i. ha−1) mixed with 2,4-D (1005 g a.e. ha−1), or triclopyr (720 g a.e. ha−1), in addition to the control treatments without herbicide application. In the second experiment, herbicides clethodim (108 g a.i. ha−1), quizalofop-p-ethyl (54 g a.i. ha−1), and clethodim + quizalofop-p-ethyl (108+54 g a.i. ha−1) in combination with the herbicides 2,4-D (1005 g a.e. ha−1) or triclopyr (720 g a.e. ha−1)had malathion (1000 g a.i. ha−1) or glyphosate (720 g a.e. ha−1) mixed, in addition to the sole applications of the graminicides. The herbicide clethodim + quizalofop-p-ethyl did not present an antagonistic interaction with the auxin herbicides, and obtained 85% weed control. To obtain control similar to the sole application of this graminicide, the dose of the herbicide clethodim needs to be increased by 20%. However, the mixture of the herbicide quizalofop-p-ethyl with 2,4-D and triclopyr affects the ryegrass control. The use of strategies that increase the absorption of ACCase herbicides or the inhibition of P450 enzymes are ways to mitigate the antagonistic effect caused by the association of the two auxin herbicides.


Sign in / Sign up

Export Citation Format

Share Document