scholarly journals Controlling wireless power transfer by tuning and detuning resonance of telemetric devices for rodents

2020 ◽  
Vol 7 (1) ◽  
pp. 19-32 ◽  
Author(s):  
Basem M. Badr ◽  
Art Makosinski ◽  
Nikolai Dechev ◽  
Kerry R. Delaney

AbstractTelemetry acquisition from rodents is important in biomedical research, where rodent behavior data is used to study disease models. Telemetry devices for such data acquisition require a long-term powering method. Wireless power transfer (WPT) via magnetic resonant coupling can provide continuous power to multiple small telemetric devices. Our loosely coupled WPT (LCWPT) system consists of a stationary primary coil and multiple freely moving secondary coils. Our previous LCWPT system was designed to transfer reasonable power to secondary coils at poor orientations but transfers excessively high amounts of power at favorable orientations. Reasonable power is needed for telemetry and radio electronics, but highly induced voltage on the secondary coil creates excess energy which must be dissipated by previous devices, and caused problems (localized heat damage and variations in component properties) leading to drift in operating frequency. To remedy these two problems, a novel scheme is proposed to automatically tune or detune the resonant frequency of the secondary circuit. Our closed-loop controlled tuning or detuning (CTD) approach can be used to prevent excessive power transfer by detuning, or to improve power transfer by tuning, depending on the need. Furthermore, this novel CTD scheme facilitates the use of multiple telemetric devices.

2017 ◽  
Vol 4 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Basem M. Badr ◽  
Robert Somogyi-Csizmazia ◽  
Paul Leslie ◽  
Kerry R. Delaney ◽  
Nikolai Dechev

The performance of wireless power transfer (WPT) systems is a function of many parameters such as resonance matching, coil quality factor, system impedance match, and others. When designing and testing WPT systems, reliable measurement of system performance is essential. In our application, we use WPT to power biomedical implants for telemetry acquisition from small rodents, where rodent behavior data is used to study disease models. Such an application employs a large primary coil and a much smaller moving secondary coil, which can be defined as a loosely coupled WPT (LCWPT) system. This paper presents a novel wireless measurement system (WMS) that is used to collect real-time performance data from the secondary circuit (implant), while testing LCWPT systems. Presently, measuring the performance of the secondary side of LCWPT systems while they are in operation can be problematic. The literature reports various measurement errors when using voltage/current probes, or coaxial cables placed directly into the primary magnetic field. We have designed the WMS to greatly reduce such measurement errors, where the WMS measures the induced voltage (and hence received power) and relays this information by radio. Experiments were done to test the WMS, as well as comparison with cable-based measurements.


2016 ◽  
Vol 3 (1) ◽  
pp. 9-14
Author(s):  
Nurcan Keskin ◽  
Huaping Liu

Power transfer efficiency in loosely coupled inductive systems can be enhanced by resonance. Primary and secondary can be tuned to same resonant frequency. In this paper, MOSFET-based Varactors and switchable capacitors are used for re-tuning of such a system at 13.56 MHz. This is achieved either using each cap structure alone or as a hybrid model. These techniques are designed for 13.56 MHz wireless power transfer system.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2621 ◽  
Author(s):  
Andrea Carloni ◽  
Federico Baronti ◽  
Roberto Di Rienzo ◽  
Roberto Roncella ◽  
Roberto Saletti

Wireless inductive-coupled power transfer and opportunity battery charging are very appealing techniques in drone applications. Weight and size are very critical constraints in drones, so the battery and the on-board electronics must be as light and small as possible. The on-board components involved in the resonant inductive-coupled wireless power transfer usually consist of the secondary coil, the compensation capacitor, the bridge rectifier, the LC-filter and the battery. This paper suggests a sizing of the LC-filter capacitor that improves the charging power of the battery. In addition, further on-board space and size is saved by using the stray inductance of the battery as filtering inductor. LTSpice simulations and experimental tests carried out on the prototype of a wireless power transfer circuit shows the dependency of the power delivered to the battery on the filter capacitor size. Finally, it is found that the power transfer to the battery is maximized by choosing the capacitor value that sets the LC-filter resonant frequency close to the double of the excitation frequency of the wireless charging. The drawback is a large current and voltage ripple in the battery.


2012 ◽  
Vol 1388 ◽  
Author(s):  
Jun Yu ◽  
Kai Ying ◽  
David Hasko ◽  
Sungsik Lee ◽  
Arman Ahnood ◽  
...  

AbstractWireless power transfer is experimentally demonstrated by transmission between an AC power transmitter and receiver, both realised using thin film technology. The transmitter and receiver thin film coils are chosen to be identical in order to promote resonant coupling. Planar spiral coils are used because of the ease of fabrication and to reduce the metal layer thickness. The energy transfer efficiency as a function of transfer distance is analysed along with a comparison between the theoretical and the experimental results.


Sign in / Sign up

Export Citation Format

Share Document