Frequency of Gly-210 Deletion Mutation among Protoporphyrinogen Oxidase Inhibitor–Resistant Palmer Amaranth (Amaranthus palmeri) Populations

Weed Science ◽  
2017 ◽  
Vol 65 (6) ◽  
pp. 718-731 ◽  
Author(s):  
Reiofeli A. Salas-Perez ◽  
Nilda R. Burgos ◽  
Gulab Rangani ◽  
Shilpa Singh ◽  
Joao Paulo Refatti ◽  
...  

The widespread occurrence of Palmer amaranth resistant to acetolactate synthase inhibitors and/or glyphosate led to the increased use of protoporphyrinogen oxidase (PPO)-inhibiting herbicides. This research aimed to: (1) evaluate the efficacy of foliar-applied fomesafen to Palmer amaranth, (2) evaluate cross-resistance to foliar PPO inhibitors and efficacy of foliar herbicides with different mechanisms of action, (3) survey the occurrence of the PPO Gly-210 deletion mutation among PPO inhibitor–resistant Palmer amaranth, (4) identify other PPO target-site mutations in resistant individuals, and (5) determine the resistance level in resistant accessions with or without the PPO Gly-210 deletion. Seedlings were sprayed with fomesafen (263 gaiha−1), dicamba (280 gaiha−1), glyphosate (870 gaiha−1), glufosinate (549 g ai ha−1), and trifloxysulfuron (7.84 gaiha−1). Selected fomesafen-resistant accessions were sprayed with other foliar-applied PPO herbicides. Mortality and injury were evaluated 21 d after treatment (DAT). The PPX2L gene of resistant and susceptible plants from a selected accession was sequenced. The majority (70%) of samples from putative PPO-resistant populations in 2015 were confirmed resistant to foliar-applied fomesafen. The efficacy of other foliar PPO herbicides on fomesafen-resistant accessions was saflufenacil>acifluorfen=flumioxazin>carfentrazone=lactofen>pyraflufen-ethyl>fomesafen>fluthiacet-methyl. With small seedlings, cross-resistance occurred with all foliar-applied PPO herbicides except saflufenacil (i.e., 25% with acifluorfen, 42% with flumioxazin). Thirty-two percent of PPO-resistant accessions were multiple resistant to glyphosate and trifloxysulfuron. Resistance to PPO herbicides in Palmer amaranth occurred in at least 13 counties in Arkansas. Of 316 fomesafen survivors tested, 55% carried the PPO Gly-210 deletion reported previously in common waterhemp. The PPO gene (PPX2L) in one accession (15CRI-B), which did not encode the Gly-210 deletion, encoded an Arg-128-Gly substitution. The 50% growth reduction values for fomesafen in accessions with Gly-210 deletion were 8- to 15-fold higher than that of a susceptible population, and 3- to 10-fold higher in accessions without the Gly-210 deletion.

2019 ◽  
Vol 33 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Vijay K. Varanasi ◽  
Chad Brabham ◽  
Nicholas E. Korres ◽  
Jason K. Norsworthy

AbstractPalmer amaranth is one of the most problematic weeds in cropping systems of North America, especially in midsouthern United States, because of its competitive ability and propensity to evolve resistance to several herbicide sites of action. Previously, we confirmed and characterized the first case of nontarget site resistance (NTSR) to fomesafen in a Palmer amaranth accession from Randolph County, AR (RCA). The primary basis of the present study was to evaluate the cross- and multiple-resistance profile of the RCA accession. The fomesafen dose-response assay in the presence of malathion revealed a lower level of RCA resistance when compared with fomesafen alone. The resistance index of the RCA accession, based on 50% biomass reduction, ranged from 63-fold (fomesafen alone) to 22-fold (malathion plus fomesafen), when compared with a 2007 susceptible, and 476-fold and 167-fold, respectively, relative to a 1986 susceptible check. The RCA accession was resistant to other protoporphyrinogen oxidase (PPO) inhibitors (i.e., flumioxazin, acifluorfen, saflufenacil) as well as the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor tembotrione and acetolactate synthase (ALS) inhibitor pyrithiobac sodium. Sequencing of theALSgene revealed no point mutations, indicating that a target-site mechanism is not involved in conferring ALS-inhibitor resistance in the RCA accession. Of the three PPO-inhibiting herbicides tested in combination with the malathion, saflufenacil resulted in the greatest biomass reduction (80%;P< 0.05) and lowest survival rate (23%;P< 0.05) relative to nontreated plants. The application of cytochrome P450 or glutathioneS-transferase inhibitors with fomesafen did not lead to any adverse effects on soybean, suggesting a possible role for these compounds for management of NTSR under field conditions. These results shed light on the relative unpredictability of NTSR in conferring herbicide cross- and multiple resistance in Palmer amaranth.


Weed Science ◽  
1997 ◽  
Vol 45 (2) ◽  
pp. 192-197 ◽  
Author(s):  
Christy L. Sprague ◽  
Edward W. Stoller ◽  
Loyd M. Wax ◽  
Michael J. Horak

Imazethapyr-resistant biotypes of Palmer amaranth and common waterhemp were studied to determine the magnitude of resistance and cross-resistance to three acetolactate synthase (ALS)-inhibiting herbicides. Resistant biotypes of Palmer amaranth and common waterhemp demonstrated > 2,800- and > 130-fold resistance to phytotoxicity of imazethapyr compared to susceptible biotypes, respectively. Concentrations of imazethapyr required for 50% in vivo inhibition of ALS activity were at least > 13,100 and > 1,900 times greater for resistant biotypes of Palmer amaranth and common waterhemp, respectively, compared to susceptible plants. Resistant biotypes of both species demonstrated cross-resistance to the sulfonylurea herbicides thifensulfuron and chlorimuron at the whole plant and enzyme levels, indicating that a less sensitive ALS enzyme confers this resistance to these plants.


2016 ◽  
Vol 30 (4) ◽  
pp. 838-847 ◽  
Author(s):  
Lewis R. Braswell ◽  
Charles W. Cahoon ◽  
Alan C. York ◽  
David L. Jordan ◽  
Richard W. Seagroves

Flumioxazin and fomesafen are commonly used to control glyphosate-resistant Palmer amaranth in cotton and other crops, thus increasing risk to select for Palmer amaranth biotypes resistant to protoporphyrinogen oxidase (PPO) inhibitors. A field experiment was conducted to determine the potential for fluridone and acetochlor to substitute for soil-applied PPO inhibitors in a Palmer amaranth management system with glufosinate applied twice POST and diuron plus MSMA POST-directed in conservation tillage cotton. Fluridone and flumioxazin applied preplant 23 to 34 d prior to planting were similarly effective. Fluridone and acetochlor plus diuron applied PRE controlled Palmer amaranth as well as fomesafen plus diuron PRE. All systems with preplant and PRE herbicides followed by glufosinate POST and diuron plus MSMA layby controlled Palmer amaranth well. Cotton yield did not differ among herbicide treatments. This research demonstrates that fluridone and acetochlor can substitute for soil-applied PPO-inhibiting herbicides in management systems for Palmer amaranth.


2012 ◽  
Vol 52 (3) ◽  
pp. 308-313 ◽  
Author(s):  
Ilias Travlos

Evaluation of Herbicide-Resistance Status on Populations of Littleseed Canarygrass (Phalaris MinorRetz.) from Southern Greece and Suggestions for their Effective ControlIn 2010, a survey was conducted in the wheat fields of a typical cereal-producing region of Greece to establish the frequency and distribution of herbicide-resistant littleseed canarygrass (Phalaris minorRetz.). In total, 73 canarygrass accessions were collected and screened in a field experiment with several herbicides commonly used to control this weed. Most of the weed populations were classed as resistant (or developing resistance) to the acetyl-CoA varboxylase (ACCase)-inhibiting herbicide diclofop, while resistance to clodinafop was markedly lower. The results of the pot experiments showed that some of the canary populations were found to have a very high level of diclofop resistance (resistance index up to 12.4), while cross resistance with other herbicides was also common. The levels of resistance and cross resistance patterns among populations varied along with the different amounts and times of selection pressure. Such variation indicated either more than one mechanism of resistance or different resistance mutations in these weed populations. The population which had the highest diclofop resistance level, showed resistance to all aryloxyphenoxypropinate (APP) herbicides applied and non-ACCase inhibitors. Alternative ACCase-inhibiting herbicides, such as pinoxaden remain effective on the majority of the tested canarygrass populations, while the acetolactate synthase (ALS)-inhibiting herbicide mesosulfuron + iodosulfuron could also provide some solutions. Consequently, there is an opportunity to effectively control canarygrass by selecting from a wide range of herbicides. It is the integration of agronomic practices with herbicide application, which helps in effective management ofP. minorand particularly its resistant populations.


Weed Science ◽  
2018 ◽  
Vol 66 (4) ◽  
pp. 424-432 ◽  
Author(s):  
Javid Gherekhloo ◽  
Zahra M. Hatami ◽  
Ricardo Alcántara-de la Cruz ◽  
Hamid R. Sadeghipour ◽  
Rafael De Prado

AbstractWild mustard (Sinapis arvensis L.) is a weed that frequently infests winter wheat (Triticum aestivum L.) fields in Golestan province, Iran. Tribenuron-methyl (TM) has been used recurrently to control this species, thus selecting for resistant S. arvensis populations. The objectives were: (1) to determine the resistance level to TM of 14 putatively resistant (PR) S. arvensis populations, collected from winter wheat fields in Golestan province, Iran, in comparison to one susceptible (S) population; and (2) to characterize the resistance mechanisms and the potential evolution of cross-resistance to other classes of acetolactate synthase (ALS)-inhibiting herbicides in three populations (AL-3, G-5, and Ag-Sr) confirmed as being resistant (R) to TM. The TM doses required to reduce the dry weight of the PR populations by 50% were between 2.2 and 16.8 times higher than those needed for S plants. The ALS enzyme activity assays revealed that the AL-3, G-5, and Ag-Sr populations evolved cross-resistance to the candidate ALS-inhibiting herbicides from the sulfonylureas (SU), triazolopyrimidines (TP), pyrimidinyl-thiobenzoates (PTB), sulfonyl-aminocarbonyl-triazolinone (SCT), and imidazolinones (IMI) classes. No differences in absorption, translocation, or metabolism of [14C]TM between R and S plants were observed, suggesting that these non-target mechanisms were not responsible for the resistance. The ALS gene of the R populations contained the Trp-574-Leu mutation, conferring cross-resistance to the SU, SCT, PTB, TP, and IMI classes. The Trp-574-Leu mutation in the ALS gene conferred cross-resistance to ALS-inhibiting herbicides in S. arvensis from winter wheat fields in Golestan province. This is the first TM resistance case confirmed in this species in Iran.


2019 ◽  
Vol 33 (5) ◽  
pp. 720-726 ◽  
Author(s):  
Chad Brabham ◽  
Jason K. Norsworthy ◽  
Michael M. Houston ◽  
Vijay K Varanasi ◽  
Tom Barber

AbstractS-Metolachlor is commonly used by soybean and cotton growers, especially with POST treatments for overlapping residuals, to obtain season-long control of glyphosate- and acetolactate synthase (ALS)–resistant Palmer amaranth. In Crittenden County, AR, reports of Palmer amaranth escapes following S-metolachlor treatment were first noted at field sites near Crawfordsville and Marion in 2016. Field and greenhouse experiments were conducted to confirm S-metolachlor resistance and to test for cross-resistance to other very-long-chain fatty acid (VLCFA)–inhibiting herbicides in Palmer amaranth accessions from Crawfordsville and Marion. Palmer amaranth control in the field (soil <3% organic matter) 14 d after treatment (DAT) was ≥94% with a 1× rate of acetochlor (1,472 g ai ha–1; emulsifiable concentrate formulation) and dimethenamid-P (631 g ai ha–1). However, S-metolachlor at 1,064 g ai ha–1 provided only 76% control, which was not significantly different from the 1/2× and 1/4× rates of dimethenamid-P and acetochlor (66% to 85%). In the greenhouse, Palmer amaranth accessions from Marion and Crawfordsville were 9.8 and 8.3 times more resistant to S-metolachlor compared with two susceptible accessions based on LD50 values obtained from dose–response experiments. Two-thirds and 1.5 times S-metolachlor at 1,064 g ha–1 were the estimated rates required to obtain 90% mortality of the Crawfordsville and Marion accessions, respectively. Data collected from the field and greenhouse confirm that these accessions have evolved a low level of resistance to S-metolachlor. In an agar-based assay, the level of resistance in the Marion accession was significantly reduced in the presence of a glutathione S-transferase (GST) inhibitor, suggesting that GSTs are the probable resistance mechanism. With respect to other VLCFA-inhibiting herbicides, Marion and Crawfordsville accessions were not cross-resistant to acetochlor, dimethenamid-P, or pyroxasulfone. However, both accessions, based on LD50 values obtained from greenhouse dose–response experiments, exhibited reduced sensitivity (1.5- to 3.6-fold) to the tested VLCFA-inhibiting herbicides.


Weed Science ◽  
1996 ◽  
Vol 44 (4) ◽  
pp. 789-794 ◽  
Author(s):  
Sarah Taylor Lovell ◽  
Loyd M. Wax ◽  
Michael J. Horak ◽  
Dallas E. Peterson

The incidence of weed resistance to acetolactate synthase (ALS) inhibiting herbicides has increased in the United States. In 1993, a population of ALS-resistant common waterhemp was discovered after two confirmed applications of an imidazolinone herbicide. Following another imazethapyr application in the glasshouse, the resistant biotype demonstrated 130-fold resistance to imazethapyr at the whole plant level. The concentration of imazethapyr required to inhibit the ALS activity by 50% was 520 times greater for the resistant biotype than the susceptible. Plants also demonstrated cross-resistance to the sulfonylureas, chlorimuron and thifensulfuron, at the whole plant and enzyme levels. This particular discovery is of concern due to the low number of applications of the selection agent (imazaquin 1989, imazethapyr 1992, and imazethapyr in the greenhouse) and the high degree of cross-resistance eliminating several options for weed control.


2020 ◽  
Vol 34 (5) ◽  
pp. 770-775
Author(s):  
Fidel González-Torralva ◽  
Jason K. Norsworthy ◽  
Leonard B. Piveta ◽  
Vijay K. Varanasi ◽  
Tom Barber ◽  
...  

AbstractPalmer amaranth is one of the most difficult-to-control weeds in row crop systems and has evolved resistance to several herbicide sites of action (SOAs). A late-season weed-escape survey had been conducted earlier to determine the distribution of protoporphyrinogen oxidase–inhibitor resistant Palmer Amaranth in Arkansas. The objective of this study was to evaluate the susceptibility of Arkansas Palmer amaranth accessions to commonly used herbicide SOAs. The SOAs evaluated were group 2 + 9, 3, 4, 5, 10, 14, 15, and 27, and the representative herbicide from each group was imazethapyr + glyphosate (79 + 860 g ha−1), trifluralin (1,120 g ha−1), dicamba (280 and 560 g ha−1), atrazine (560 g ha−1), glufosinate (594 g ha−1), fomesafen (395 g ha−1), S-metolachlor (1,064 g ha−1), and tembotrione (92 g ha−1), respectively. Palmer amaranth mortality varied among accessions across SOAs. Averaged across accessions, the mortality rates, by treatment in order from lowest to highest, were as follows: glyphosate + imazethapyr (16%), tembotrione (51%), dicamba at 280 g ha−1 (51%), fomesafen (76%), dicamba at 560 g ha−1 (82%), atrazine (85%), trifluralin (87%), S-metolachlor (96%), and glufosinate (99.5%). This study provides evidence that Palmer amaranth accessions with low susceptibility to glyphosate + imazethapyr, fomesafen, and tembotrione are widespread throughout Arkansas. Of the remaining SOAs, most Palmer amaranth accessions were sensitive; however, within each herbicide SOA, except glufosinate, control of some accessions was less than expected and resistance is suspected.


Weed Science ◽  
2019 ◽  
pp. 1-6
Author(s):  
Zhaofeng Huang ◽  
Xinxin Zhou ◽  
Chaoxian Zhang ◽  
Cuilan Jiang ◽  
Hongjuan Huang ◽  
...  

Abstract Common lambsquarters (Chenopodium album L.) is one of the most troublesome weeds in soybean [Glycine max (L.) Merr.] and corn (Zea mays L.) fields in northeast China. In 2017, a C. album population that survived imazethapyr at the recommended field rate was collected from a soybean field in Heilongjiang Province in China. Experiments were conducted to determine the basis of resistance to imazethapyr and investigate the herbicide-resistance pattern in C. album. Dose–response tests showed that the resistant population (R) displayed high resistance to imazethapyr (20-fold) compared with the susceptible population (S). An in vitro acetolactate synthase (ALS) activity assay indicated that the ALS of the R population was resistant to imazethapyr compared with the ALS of the S population. Sequence analysis of the ALS gene revealed that the GCA was replaced by ACA at amino acid position 122, which resulted in an alanine to threonine substitution (Ala-122-Thr) in the R population. The R population displayed cross-resistance to thifensulfuron-methyl and flumetsulam but susceptibility to bispyribac-sodium, flucarbazone, glyphosate, mesotrione, and fomesafen. These results confirmed that the basis of imazethapyr resistance in C. album was conferred by the Ala-122-Thr substitution in the ALS enzyme. This is the first report of the target-site basis of ALS-inhibiting herbicide resistance in C. album.


2020 ◽  
pp. 1-5
Author(s):  
Wyatt Coffman ◽  
Tom Barber ◽  
Jason K. Norsworthy ◽  
Greg R. Kruger

Abstract Throughout eastern Arkansas, Palmer amaranth resistant to protoporphyrinogen oxidase (PPO)-inhibiting herbicides (Group 14 herbicides) has become widespread. Most PPO-resistant Palmer amaranth biotypes possess a target-site mutation, but a metabolic resistance mechanism to fomesafen (Group 14) has also been identified. Once metabolic resistance manifests, plants may also be tolerant to other herbicides and sites of action. To evaluate whether varying spray parameters affected control of PPO-resistant Palmer amaranth in dicamba-tolerant crops, field trials were conducted in 2017 and 2018 at the Lon Mann Cotton Research Station near Marianna, AR, and on-farm in Marion, AR. The experiment included split plot factors of dicamba rate, nozzle type, and carrier volume, with a whole plot factor of population. Dicamba was applied at 560 or 1120 g ae ha−1 through 110015 TTI or AirMix nozzles at 70 or 140 L ha−1 to PPO-resistant or PPO-susceptible Palmer amaranth. Palmer amaranth control 14 d after treatment (DAT) was influenced by an interaction between population and carrier volume. PPO-resistant Palmer amaranth control 14 DAT was 81% regardless of carrier volume, compared with 90% and 95% control at 70 and 140 L ha−1, respectively, of the PPO-susceptible population. An interaction between nozzle type and carrier volume influenced Palmer amaranth control 21 DAT, whereas AirMix nozzles at 140 L ha−1 controlled Palmer amaranth at a greater level (94%) than any other nozzle and carrier volume combination (≤90%). An interaction between population and dicamba rate influenced the relative density of Palmer amaranth 21 DAT. PPO-resistant Palmer amaranth density was less affected by dicamba at either rate than PPO-susceptible Palmer amaranth, relative to the nontreated check. Results concur with those of other research that suggest PPO-resistant Palmer amaranth is harder to control with dicamba. Otherwise, increasing carrier volume affected overall Palmer amaranth control to a greater degree than any other factor.


Sign in / Sign up

Export Citation Format

Share Document