scholarly journals Susceptibility of Arkansas Palmer amaranth accessions to common herbicide sites of action

2020 ◽  
Vol 34 (5) ◽  
pp. 770-775
Author(s):  
Fidel González-Torralva ◽  
Jason K. Norsworthy ◽  
Leonard B. Piveta ◽  
Vijay K. Varanasi ◽  
Tom Barber ◽  
...  

AbstractPalmer amaranth is one of the most difficult-to-control weeds in row crop systems and has evolved resistance to several herbicide sites of action (SOAs). A late-season weed-escape survey had been conducted earlier to determine the distribution of protoporphyrinogen oxidase–inhibitor resistant Palmer Amaranth in Arkansas. The objective of this study was to evaluate the susceptibility of Arkansas Palmer amaranth accessions to commonly used herbicide SOAs. The SOAs evaluated were group 2 + 9, 3, 4, 5, 10, 14, 15, and 27, and the representative herbicide from each group was imazethapyr + glyphosate (79 + 860 g ha−1), trifluralin (1,120 g ha−1), dicamba (280 and 560 g ha−1), atrazine (560 g ha−1), glufosinate (594 g ha−1), fomesafen (395 g ha−1), S-metolachlor (1,064 g ha−1), and tembotrione (92 g ha−1), respectively. Palmer amaranth mortality varied among accessions across SOAs. Averaged across accessions, the mortality rates, by treatment in order from lowest to highest, were as follows: glyphosate + imazethapyr (16%), tembotrione (51%), dicamba at 280 g ha−1 (51%), fomesafen (76%), dicamba at 560 g ha−1 (82%), atrazine (85%), trifluralin (87%), S-metolachlor (96%), and glufosinate (99.5%). This study provides evidence that Palmer amaranth accessions with low susceptibility to glyphosate + imazethapyr, fomesafen, and tembotrione are widespread throughout Arkansas. Of the remaining SOAs, most Palmer amaranth accessions were sensitive; however, within each herbicide SOA, except glufosinate, control of some accessions was less than expected and resistance is suspected.

2017 ◽  
Vol 31 (3) ◽  
pp. 364-372 ◽  
Author(s):  
Jonathon R. Kohrt ◽  
Christy L. Sprague

Three field experiments were conducted from 2013 to 2015 in Barry County, MI to evaluate the effectiveness of PRE, POST, and one- (EPOS) and two-pass (PRE followed by POST) herbicide programs for management of multiple-resistant Palmer amaranth in field corn. The Palmer amaranth population at this location has demonstrated resistance to glyphosate (Group 9), ALS-inhibiting herbicides (Group 2), and atrazine (Group 5). In the PRE only experiment, the only herbicide treatments that consistently provided ~80% or greater control were pyroxasulfone and the combination of mesotrione +S-metolachlor. However, none of these treatments provided season-long Palmer amaranth control. Only topramezone provided >85% Palmer amaranth control 14 DAT, in the POST only experiment. Of the 19 herbicide programs studied all but three programs provided ≥88% Palmer amaranth control at corn harvest. Herbicide programs that did not control Palmer amaranth relied on only one effective herbicide site of action and in one case did not include a residual herbicide POST for late-season Palmer amaranth control. Some of the EPOS treatments were effective for season-long Palmer amaranth control; however, application timing and the inclusion of a residual herbicide component will be critical for controlling Palmer amaranth. The programs that consistently provided the highest levels of season-long Palmer amaranth control were PRE followed by POST herbicide programs that relied on a minimum of two effective herbicide sites of action and usually included a residual herbicide for late-season control.


2016 ◽  
Vol 30 (4) ◽  
pp. 838-847 ◽  
Author(s):  
Lewis R. Braswell ◽  
Charles W. Cahoon ◽  
Alan C. York ◽  
David L. Jordan ◽  
Richard W. Seagroves

Flumioxazin and fomesafen are commonly used to control glyphosate-resistant Palmer amaranth in cotton and other crops, thus increasing risk to select for Palmer amaranth biotypes resistant to protoporphyrinogen oxidase (PPO) inhibitors. A field experiment was conducted to determine the potential for fluridone and acetochlor to substitute for soil-applied PPO inhibitors in a Palmer amaranth management system with glufosinate applied twice POST and diuron plus MSMA POST-directed in conservation tillage cotton. Fluridone and flumioxazin applied preplant 23 to 34 d prior to planting were similarly effective. Fluridone and acetochlor plus diuron applied PRE controlled Palmer amaranth as well as fomesafen plus diuron PRE. All systems with preplant and PRE herbicides followed by glufosinate POST and diuron plus MSMA layby controlled Palmer amaranth well. Cotton yield did not differ among herbicide treatments. This research demonstrates that fluridone and acetochlor can substitute for soil-applied PPO-inhibiting herbicides in management systems for Palmer amaranth.


2020 ◽  
pp. 1-5
Author(s):  
Wyatt Coffman ◽  
Tom Barber ◽  
Jason K. Norsworthy ◽  
Greg R. Kruger

Abstract Throughout eastern Arkansas, Palmer amaranth resistant to protoporphyrinogen oxidase (PPO)-inhibiting herbicides (Group 14 herbicides) has become widespread. Most PPO-resistant Palmer amaranth biotypes possess a target-site mutation, but a metabolic resistance mechanism to fomesafen (Group 14) has also been identified. Once metabolic resistance manifests, plants may also be tolerant to other herbicides and sites of action. To evaluate whether varying spray parameters affected control of PPO-resistant Palmer amaranth in dicamba-tolerant crops, field trials were conducted in 2017 and 2018 at the Lon Mann Cotton Research Station near Marianna, AR, and on-farm in Marion, AR. The experiment included split plot factors of dicamba rate, nozzle type, and carrier volume, with a whole plot factor of population. Dicamba was applied at 560 or 1120 g ae ha−1 through 110015 TTI or AirMix nozzles at 70 or 140 L ha−1 to PPO-resistant or PPO-susceptible Palmer amaranth. Palmer amaranth control 14 d after treatment (DAT) was influenced by an interaction between population and carrier volume. PPO-resistant Palmer amaranth control 14 DAT was 81% regardless of carrier volume, compared with 90% and 95% control at 70 and 140 L ha−1, respectively, of the PPO-susceptible population. An interaction between nozzle type and carrier volume influenced Palmer amaranth control 21 DAT, whereas AirMix nozzles at 140 L ha−1 controlled Palmer amaranth at a greater level (94%) than any other nozzle and carrier volume combination (≤90%). An interaction between population and dicamba rate influenced the relative density of Palmer amaranth 21 DAT. PPO-resistant Palmer amaranth density was less affected by dicamba at either rate than PPO-susceptible Palmer amaranth, relative to the nontreated check. Results concur with those of other research that suggest PPO-resistant Palmer amaranth is harder to control with dicamba. Otherwise, increasing carrier volume affected overall Palmer amaranth control to a greater degree than any other factor.


2019 ◽  
Vol 33 (2) ◽  
pp. 355-365 ◽  
Author(s):  
Russ Garetson ◽  
Vijay Singh ◽  
Shilpa Singh ◽  
Peter Dotray ◽  
Muthukumar Bagavathiannan

AbstractA state-level survey was conducted across major row-crop production regions of Texas to document the level of sensitivity of Palmer amaranth to glyphosate, atrazine, pyrithiobac, tembotrione, fomesafen, and dicamba. Between 137 and 161 Palmer amaranth populations were evaluated for sensitivity to the labelled field rate (1X), and rated as resistant (≤49% injury), less sensitive (50% to 89% injury), or susceptible (90% to 100% injury). For glyphosate, 62%, 19%, 13%, and 13% of the populations from the High Plains, Central Texas, Rio Grande Valley, and Lower Gulf Coast, respectively, were resistant. Resistance to atrazine was more common in Palmer amaranth populations from the High Plains than in other regions, with 16% of the populations resistant and 22% less sensitive. Approximately 90% of the populations from the High Plains that exhibited resistance to atrazine POST also were resistant to atrazine PRE. Of the 160 populations tested for pyrithiobac, approximately 99% were resistant or less sensitive, regardless of the region. No resistance was found to fomesafen, tembotrione, or dicamba. However, 22% of the populations from the High Plains were less sensitive to 1X (93 g ai ha−1) tembotrione, but were killed at 2X, illustrating the background variability in sensitivity to this herbicide. For dicamba, three populations, all from the High Plains, exhibited less sensitivity at the 1X rate (controlled at the 2X rate; 1X = 560 g ae ha−1). One population exhibited multiple resistance to three herbicides with distinct sites of action (SOAs) involving acetolactate synthase, 5-enolpyruvylshikimate-3-phosphate synthase, and photosystem II inhibitors. Palmer amaranth populations exhibited less sensitivity to approximately 15 combinations of herbicides involving up to five SOAs. Dose-response assays conducted on the populations most resistant to glyphosate, pyrithiobac, or atrazine indicated they were 30-, 32-, or 49-fold or more resistant to these herbicides, respectively, compared with a susceptible standard.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Michael M. Houston ◽  
L. Tom Barber ◽  
Jason K. Norsworthy ◽  
Trent L. Roberts

Protoporphyrinogen oxidase- (PPO-) resistant Amaranthus palmeri (S.) Wats. (Palmer amaranth) was confirmed in Arkansas in 2015. Field trials were conducted in Crawfordsville, Gregory, and Marion, Arkansas in 2016, and Crawfordsville and Marion in 2017, assessing PPO-resistant Palmer amaranth control options in Glycine max (L.) Merr. (soybean). Twelve trials consisted of 26 preemergence (PRE) treatments, evaluated for Palmer amaranth control and density reduction at 28 days after treatment (DAT). Treatments that consisted of PPO- or acetolactate synthase- (ALS-) inhibiting herbicides such as flumioxazin (72 g ai ha−1) or sulfentrazone + cloransulam (195 g ha−1 + 25 g ha−1) controlled Palmer amaranth <60%. At 28 DAT, treatments including mixtures of a very-long-chain fatty acid (VLCFA) plus the photosystem II- (PSII-) inhibiting herbicide metribuzin provided increased control over single herbicide sites of action (SOA) or herbicides mixtures to which Palmer amaranth was resistant. Pyroxasulfone + metribuzin (149 g ha−1 + 314 g ha−1) controlled Palmer amaranth 91% control across twelve trials at 28 DAT. S-metolachlor alone did not provide consistent, acceptable control of PPO-resistant Palmer amaranth (55–77%); subsequent research has determined that these populations are resistant to S-metolachlor. A minimum of two effective herbicides should be included in soybean PRE programs for control of PPO-resistant Palmer amaranth.


Weed Science ◽  
2017 ◽  
Vol 65 (6) ◽  
pp. 718-731 ◽  
Author(s):  
Reiofeli A. Salas-Perez ◽  
Nilda R. Burgos ◽  
Gulab Rangani ◽  
Shilpa Singh ◽  
Joao Paulo Refatti ◽  
...  

The widespread occurrence of Palmer amaranth resistant to acetolactate synthase inhibitors and/or glyphosate led to the increased use of protoporphyrinogen oxidase (PPO)-inhibiting herbicides. This research aimed to: (1) evaluate the efficacy of foliar-applied fomesafen to Palmer amaranth, (2) evaluate cross-resistance to foliar PPO inhibitors and efficacy of foliar herbicides with different mechanisms of action, (3) survey the occurrence of the PPO Gly-210 deletion mutation among PPO inhibitor–resistant Palmer amaranth, (4) identify other PPO target-site mutations in resistant individuals, and (5) determine the resistance level in resistant accessions with or without the PPO Gly-210 deletion. Seedlings were sprayed with fomesafen (263 gaiha−1), dicamba (280 gaiha−1), glyphosate (870 gaiha−1), glufosinate (549 g ai ha−1), and trifloxysulfuron (7.84 gaiha−1). Selected fomesafen-resistant accessions were sprayed with other foliar-applied PPO herbicides. Mortality and injury were evaluated 21 d after treatment (DAT). The PPX2L gene of resistant and susceptible plants from a selected accession was sequenced. The majority (70%) of samples from putative PPO-resistant populations in 2015 were confirmed resistant to foliar-applied fomesafen. The efficacy of other foliar PPO herbicides on fomesafen-resistant accessions was saflufenacil>acifluorfen=flumioxazin>carfentrazone=lactofen>pyraflufen-ethyl>fomesafen>fluthiacet-methyl. With small seedlings, cross-resistance occurred with all foliar-applied PPO herbicides except saflufenacil (i.e., 25% with acifluorfen, 42% with flumioxazin). Thirty-two percent of PPO-resistant accessions were multiple resistant to glyphosate and trifloxysulfuron. Resistance to PPO herbicides in Palmer amaranth occurred in at least 13 counties in Arkansas. Of 316 fomesafen survivors tested, 55% carried the PPO Gly-210 deletion reported previously in common waterhemp. The PPO gene (PPX2L) in one accession (15CRI-B), which did not encode the Gly-210 deletion, encoded an Arg-128-Gly substitution. The 50% growth reduction values for fomesafen in accessions with Gly-210 deletion were 8- to 15-fold higher than that of a susceptible population, and 3- to 10-fold higher in accessions without the Gly-210 deletion.


2019 ◽  
Vol 33 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Vijay K. Varanasi ◽  
Chad Brabham ◽  
Nicholas E. Korres ◽  
Jason K. Norsworthy

AbstractPalmer amaranth is one of the most problematic weeds in cropping systems of North America, especially in midsouthern United States, because of its competitive ability and propensity to evolve resistance to several herbicide sites of action. Previously, we confirmed and characterized the first case of nontarget site resistance (NTSR) to fomesafen in a Palmer amaranth accession from Randolph County, AR (RCA). The primary basis of the present study was to evaluate the cross- and multiple-resistance profile of the RCA accession. The fomesafen dose-response assay in the presence of malathion revealed a lower level of RCA resistance when compared with fomesafen alone. The resistance index of the RCA accession, based on 50% biomass reduction, ranged from 63-fold (fomesafen alone) to 22-fold (malathion plus fomesafen), when compared with a 2007 susceptible, and 476-fold and 167-fold, respectively, relative to a 1986 susceptible check. The RCA accession was resistant to other protoporphyrinogen oxidase (PPO) inhibitors (i.e., flumioxazin, acifluorfen, saflufenacil) as well as the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor tembotrione and acetolactate synthase (ALS) inhibitor pyrithiobac sodium. Sequencing of theALSgene revealed no point mutations, indicating that a target-site mechanism is not involved in conferring ALS-inhibitor resistance in the RCA accession. Of the three PPO-inhibiting herbicides tested in combination with the malathion, saflufenacil resulted in the greatest biomass reduction (80%;P< 0.05) and lowest survival rate (23%;P< 0.05) relative to nontreated plants. The application of cytochrome P450 or glutathioneS-transferase inhibitors with fomesafen did not lead to any adverse effects on soybean, suggesting a possible role for these compounds for management of NTSR under field conditions. These results shed light on the relative unpredictability of NTSR in conferring herbicide cross- and multiple resistance in Palmer amaranth.


2014 ◽  
Vol 28 (1) ◽  
pp. 58-71 ◽  
Author(s):  
Charles W. Cahoon ◽  
Alan C. York ◽  
David L. Jordan ◽  
Wesley J. Everman ◽  
Richard W. Seagroves

Glyphosate-resistant (GR) Palmer amaranth is a widespread problem in southeastern cotton production areas. Herbicide programs to control this weed in no-till cotton commonly include flumioxazin applied with preplant burndown herbicides approximately 3 wk before planting followed by fomesafen applied PRE and then glufosinate or glyphosate applied POST. Flumioxazin and fomesafen are both protoporphyrinogen oxidase (PPO) inhibitors. Multiple yearly applications of PPO inhibitors in cotton, along with widespread use of PPO inhibitors in rotational crops, raise concerns over possible selection for PPO resistance in Palmer amaranth. An experiment was conducted to determine the potential to substitute diuron for one of the PPO inhibitors in no-till cotton. Palmer amaranth control by diuron and fomesafen applied PRE varied by location, but fomesafen was generally more effective. Control by both herbicides was inadequate when timely rainfall was not received for activation. Palmer amaranth control was more consistent when programs included a preplant residual herbicide. Applied preplant, flumioxazin was more effective than diuron. Programs with diuron preplant followed by fomesafen PRE were as effective as flumioxazin preplant followed by fomesafen only if fomesafen was activated in a timely manner. Programs with flumioxazin preplant followed by diuron PRE were as effective as flumioxazin preplant followed by fomesafen PRE at all locations, regardless of timely activation of the PRE herbicide. As opposed to flumioxazin preplant followed by fomesafen PRE, which exposes Palmer amaranth to two PPO-inhibiting herbicides, one could reduce selection pressure by using flumioxazin preplant followed by diuron PRE without sacrificing Palmer amaranth control or cotton yield.


2021 ◽  
pp. 1-18
Author(s):  
Levi D. Moore ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Ramon G. Leon ◽  
David L. Jordan ◽  
...  

Abstract Field studies were conducted to evaluate linuron for POST control of Palmer amaranth in sweetpotato to minimize reliance on protoporphyrinogen oxidase (PPO)-inhibiting herbicides. Treatments were arranged in a two by four factorial where the first factor consisted of two rates of linuron (420 and 700 g ai ha−1), and the second factor consisted of linuron applied alone or in combinations of linuron plus a nonionic surfactant (NIS) (0.5% v/v), linuron plus S-metolachlor (800 g ai ha−1), or linuron plus NIS plus S-metolachlor. In addition, S-metolachlor alone and nontreated weedy and weed-free checks were included for comparison. Treatments were applied to ‘Covington’ sweetpotato 8 d after transplanting (DAP). S-metolachlor alone provided poor Palmer amaranth control because emergence had occurred at applications. All treatments that included linuron resulted in at least 98 and 91% Palmer amaranth control 1 and 2 wk after treatment (WAT), respectively. Including NIS with linuron did not increase Palmer amaranth control compared to linuron alone, but increased sweetpotato injury and subsequently decreased total sweetpotato yield by 25%. Including S-metolachlor with linuron resulted in the greatest Palmer amaranth control 4 WAT, but increased crop foliar injury to 36% 1 WAT compared to 17% foliar injury from linuron alone. Marketable and total sweetpotato yield was similar between linuron alone and linuron plus S-metolachlor or S-metolachlor plus NIS treatments, though all treatments resulted in at least 39% less total yield than the weed-free check resulting from herbicide injury and/or Palmer amaranth competition. Because of the excellent POST Palmer amaranth control from linuron 1 WAT, a system including linuron applied 7 DAP followed by S-metolachlor applied 14 DAP could help to extend residual Palmer amaranth control further into the critical period of weed control while minimizing sweetpotato injury.


2021 ◽  
pp. 1-9
Author(s):  
Clint W. Beiermann ◽  
Cody F. Creech ◽  
Stevan Z. Knezevic ◽  
Amit J. Jhala ◽  
Robert Harveson ◽  
...  

Abstract A prepackaged mixture of desmedipham + phenmedipham was previously labeled for control of Amaranthus spp. in sugarbeet. Currently, there are no effective POST herbicide options to control glyphosate-resistant Palmer amaranth in sugarbeet. Sugarbeet growers are interested in using desmedipham + phenmedipham to control escaped Palmer amaranth. In 2019, a greenhouse experiment was initiated near Scottsbluff, NE, to determine the selectivity of desmedipham and phenmedipham between Palmer amaranth and sugarbeet. Three populations of Palmer amaranth and four sugarbeet hybrids were evaluated. Herbicide treatments consisted of desmedipham and phenmedipham applied singly or as mixtures at an equivalent rate. Herbicides were applied when Palmer amaranth and sugarbeet were at the cotyledon stage, or two true-leaf sugarbeet stage and when Palmer amaranth was 7 cm tall. The selectivity indices for desmedipham, phenmedipham, and desmedipham + phenmedipham were 1.61, 2.47, and 3.05, respectively, at the cotyledon stage. At the two true-leaf application stage, the highest rates of desmedipham and phenmedipham were associated with low mortality rates in sugarbeet, resulting in a failed response of death. The highest rates of desmedipham + phenmedipham caused a death response of sugarbeet; the selectivity index was 2.15. Desmedipham treatments resulted in lower LD50 estimates for Palmer amaranth compared to phenmedipham, indicating that desmedipham can provide greater levels of control for Palmer amaranth. However, desmedipham also caused greater injury in sugarbeet, producing lower LD50 estimates compared to phenmedipham. Desmedipham + phenmedipham provided 90% or greater control of cotyledon-size Palmer amaranth at a labeled rate but also caused high levels of sugarbeet injury. Neither desmedipham, phenmedipham, nor desmedipham + phenmedipham was able to control 7-cm tall Palmer amaranth at previously labeled rates. Results indicate that desmedipham + phenmedipham can only control Palmer amaranth if applied at the cotyledon stage and a high level of sugarbeet injury is acceptable.


Sign in / Sign up

Export Citation Format

Share Document