Dispersion Reduction in Open-Channel Liquid Electrochromatographic Columns via Pressure-Driven Back Flow

2003 ◽  
Vol 75 (14) ◽  
pp. 3352-3359 ◽  
Author(s):  
Debashis Dutta ◽  
David T. Leighton
Lab on a Chip ◽  
2013 ◽  
Vol 13 (15) ◽  
pp. 2922 ◽  
Author(s):  
Ana C. Glavan ◽  
Ramses V. Martinez ◽  
E. Jane Maxwell ◽  
Anand Bala Subramaniam ◽  
Rui M. D. Nunes ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 011-026
Author(s):  
Jerome Godwin Egbe ◽  
Jonah Chukwuemeka Agunwamba

The model design was developed for the alignment and it was utilized to test for various geometrics and stream conditions searching for a low and incentive for RMSE and the response variable. Also, during the alignment half of the exploratory information was set to their coefficients, and the staying set of information was similarly be utilized for confirmation purposes. Utilizing around thirty out of the fifty informational collections created in the research facility dependent on relapse investigation was applied to the non-direct model to decide the constants. The staying twenty informational collections from research centre analyses were utilized for check of the model. The absence of the fittest was utilized likewise to check the request for the proposed relapse model utilizing the water profundity as the response variable. The Froude numbers from the post-pressure driven hop segment from 0.37 to 0.41 (0.37 < Fr3< 0.41), likewise showing that the streams are subcritical. The Froude numbers from the post-pressure driven hop area inside 0.37 to 0.41 (0.37<Fr3 <0.41), this shows the streams are subcritical. The connection between sequent profundity proportion y3//y2 and speed proportion V2/V3 is around - 5024 +1.485 Fr2 with R2 =0.9957 showing that as the sequent profundity proportion and speed proportion expands the inflow Froude number Fr2 additionally increments, the hydraulic jump extended from - 0.001 to 0.001 which gives some vitality progression with an expansion in the pace of release through the flume. The upstream of the flume, the Froude numbers go from 0.038 to 0.052 (0.038 < Fr1 < 0.52), demonstrating that the streams were subcritical and less harm to the channel.


2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
Y.P Song ◽  
F Schlesinger ◽  
S Petri ◽  
R Dengler ◽  
K Krampfl

1975 ◽  
Vol 34 (01) ◽  
pp. 050-062
Author(s):  
Dale H Cowan ◽  
Richard C Graham ◽  
Patricia Shook ◽  
Ronda Griffin

SummaryTo determine the effect on platelet behavior of transient exposure of platelets to ascorbic acid, studies of platelet function and ultrastructure were done before exposure to ascorbic acid at pH 6.5, during exposure to pH 6.5, and after restoration of pH to pre-acidifìcation levels. The effect of ascorbic acid (A. A.) was compared to that of HCl and citric acid (C. A.). ADP- and collagen-induced aggregation of normal platelets were significantly impaired by both A. A. and C. A. but were less affected by HCl. The release of 14C-serotonin was significantly reduced by each agent. The ultra-structure of normal platelets brought to pH 6.5 by A.A. was normal. After neutralization, there was marked dilatation of the open channel system and loss of the disc shape. When platelets were brought to pH 6.5 by A. A., then neutralized, the aggregates which formed after stimulation by ADP or collagen were smaller than normal, the platelets were less closely approximated, and degranulation was less complete. The data show that exposure of platelets to ascorbic acid for short intervals impairs their function when measured after restoration of pH to levels compatible with maximal responses. Platelet survival studies using autologous platelets labelled with 51Cr in the presence or absence of ascorbic acid showed that the recovery of normal platelets was unaffected by ascorbic acid, whereas recovery of platelets from patients with idiopathic thrombocytopenic purpura, idiopathic thrombocythemia, and alcohol-related thrombocytopenia was markedly reduced. The injury resulting from the use of ascorbic acid in preparing platelets for studies of platelet survival in patients with disorders affecting platelets may impair the recovery of the cells, resulting in artifactual changes in the survival studies.


2003 ◽  
Vol 773 ◽  
Author(s):  
James D. Kubicek ◽  
Stephanie Brelsford ◽  
Philip R. LeDuc

AbstractMechanical stimulation of single cells has been shown to affect cellular behavior from the molecular scale to ultimate cell fate including apoptosis and proliferation. In this, the ability to control the spatiotemporal application of force on cells through their extracellular matrix connections is critical to understand the cellular response of mechanotransduction. Here, we develop and utilize a novel pressure-driven equibiaxial cell stretching device (PECS) combined with an elastomeric material to control specifically the mechanical stimulation on single cells. Cells were cultured on silicone membranes coated with molecular matrices and then a uniform pressure was introduced to the opposite surface of the membrane to stretch single cells equibiaxially. This allowed us to apply mechanical deformation to investigate the complex nature of cell shape and structure. These results will enhance our knowledge of cellular and molecular function as well as provide insights into fields including biomechanics, tissue engineering, and drug discovery.


Sign in / Sign up

Export Citation Format

Share Document