scholarly journals Analytical Currents: Defining the molecular forces that shape protein nanofibrils | Understanding noise in solid-state nanopores | DataChip tackles high-throughput drug screening | Dielectrophoresis with reconfigurable oil barriers | A multiwell, multicantilever, protein detection system | Proteomic profiling method not suitable for detecting prostate cancer | Whole-organism imaging MS | MALDI MS of transition-metal catalysts | Bard and Moerner win the 2008 Wolf Prize in Chemistry

2008 ◽  
Vol 80 (5) ◽  
pp. 1349-1352
2007 ◽  
Vol 177 (4S) ◽  
pp. 52-53
Author(s):  
Stefano Ongarello ◽  
Eberhard Steiner ◽  
Regina Achleitner ◽  
Isabel Feuerstein ◽  
Birgit Stenzel ◽  
...  

2019 ◽  
Author(s):  
Philip Tatman ◽  
Anthony Fringuello ◽  
Denise Damek ◽  
Samy Youssef ◽  
Randy Jensn ◽  
...  

2019 ◽  
Author(s):  
Michael Gerckens ◽  
Hani Alsafadi ◽  
Darcy Wagner ◽  
Katharina Heinzelmann ◽  
Kenji Schorpp ◽  
...  

2020 ◽  
Author(s):  
S Bhatia ◽  
H Ahlert ◽  
N Dienstbier ◽  
J Schliehe-Diecks ◽  
M Sönnichsen ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dezhi Feng ◽  
Jing Su ◽  
Yi Xu ◽  
Guifang He ◽  
Chenguang Wang ◽  
...  

AbstractProstate-specific antigen (PSA) is the most widely used biomarker for the early diagnosis of prostate cancer. Existing methods for PSA detection are burdened with some limitations and require improvement. Herein, we developed a novel microfluidic–electrochemical (μFEC) detection system for PSA detection. First, we constructed an electrochemical biosensor based on screen-printed electrodes (SPEs) with modification of gold nanoflowers (Au NFs) and DNA tetrahedron structural probes (TSPs), which showed great detection performance. Second, we fabricated microfluidic chips by DNA TSP-Au NF-modified SPEs and a PDMS layer with designed dense meandering microchannels. Finally, the μFEC detection system was achieved based on microfluidic chips integrated with the liquid automatic conveying unit and electrochemical detection platform. The μFEC system we developed acquired great detection performance for PSA detection in PBS solution. For PSA assays in spiked serum samples of the μFEC system, we obtained a linear dynamic range of 1–100 ng/mL with a limit of detection of 0.2 ng/mL and a total reaction time <25 min. Real serum samples of prostate cancer patients presented a strong correlation between the “gold-standard” chemiluminescence assays and the μFEC system. In terms of operation procedure, cost, and reaction time, our method was superior to the current methods for PSA detection and shows great potential for practical clinical application in the future.


Sign in / Sign up

Export Citation Format

Share Document