gold nanoflowers
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 32)

H-INDEX

22
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Vishal Gupta ◽  
Anju Srivast ◽  
Reena Jain ◽  
Vijay Kumar Sharma ◽  
Lalit Kumar

Abstract This paper focuses on the fabrication of an ITO-free plasmonic assisted inverted organic solar cell (OSC) constituting aluminium doped zinc oxide (AZO) as front cathode and ultraviolet (UV) filtering layer. The gold nanoflowers are introduced in the device to increase the efficiency using localized surface plasmon resonance (LSPR) shown by plasmonic nanoparticles. We used GPVDM software to first optimize the cell, based on the geometry AZO/ZnO/PTB7:PC71BM/MoO3/Ag where AZO acts as the transparent conducting oxide (TCO) cathode and UV filter, zinc oxide (ZnO) behaves as the electron transport layer (ETL), Thieno[3,4 b]thiophene-alt-benzodithiophene: [6,6]-phenyl C71 butyric acid methyl ester (PTB7: PC71BM) mixture as the active layer, molybdenum trioxide (MoO3) as the hole transport layer (HTL) and silver (Ag) serves as the anode layer. By modelling, we find that the optimized device with maximum power conversion efficiency (PCE) includes 10 nm thick HTL, 200 nm thick photoactive layer and ETL thickness of 30 nm. Using the optimized thicknesses, we have fabricated three structurally identical inverted OSCs: first having AZO as the front cathode (AZO based device); second with ITO as the front cathode (ITO based control device); third includes AZO as cathode and plasmonic gold nanoflowers embedded inside the active layer (plasmonic assisted AZO based device). The AZO based device exhibited the PCE value of 6.19%, slightly less than the efficiency of 6.83% for ITO based control device. However, a remarkable increase in the lifetime was achieved for AZO based device under UV assisted acceleration ageing test. The stability enhancement of AZO based device is because of the UV filtering properties of AZO which prevent degradation in the device due to UV exposure. Also, the PCE of AZO based device was further enhanced to 7.01% when plasmonic gold nanoparticles were included in the active layer. This work provides a feasible way to develop an ITO free plasmonic assisted inverted organic solar cell to achieve cost-effectiveness, high efficiency and stability.


Author(s):  
Chenbiao Li ◽  
Peifang Chen ◽  
Imran Mahmood Khan ◽  
Zhouping Wang ◽  
Yin Zhang ◽  
...  

The monitoring of small-molecule thiols (especially glutathione) has attracted widespread attention due to their involvement in numerous physiological processes in living organisms and cells. In this work, the dual-mode nanosensor...


Author(s):  
Olavo Santos ◽  
Juliana Cancino-Bernardi ◽  
Paula Maria Pincela Lins ◽  
Diego Sampaio ◽  
Theo Pavan ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 995
Author(s):  
Yucheng Peng ◽  
Xiaomeng Wang ◽  
Yue Wang ◽  
Yue Gao ◽  
Rui Guo ◽  
...  

The design of multimodal imaging nanoplatforms with improved tumor accumulation represents a major trend in the current development of precision nanomedicine. To this end, we report herein the preparation of macrophage (MA)-laden gold nanoflowers (NFs) embedded with ultrasmall iron oxide nanoparticles (USIO NPs) for enhanced dual-mode computed tomography (CT) and magnetic resonance (MR) imaging of tumors. In this work, generation 5 poly(amidoamine) (G5 PAMAM) dendrimer-stabilized gold (Au) NPs were conjugated with sodium citrate-stabilized USIO NPs to form hybrid seed particles for the subsequent growth of Au nanoflowers (NFs). Afterwards, the remaining terminal amines of dendrimers were acetylated to form the dendrimer-stabilized Fe3O4/Au NFs (for short, Fe3O4/Au DSNFs). The acquired Fe3O4/Au DSNFs possess an average size around 90 nm, display a high r1 relaxivity (1.22 mM−1 s−1), and exhibit good colloidal stability and cytocompatibility. The created hybrid DSNFs can be loaded within MAs without producing any toxicity to the cells. Through the mediation of MAs with a tumor homing and immune evasion property, the Fe3O4/Au DSNFs can be delivered to tumors more efficiently than those without MAs after intravenous injection, thus significantly improving the MR/CT imaging performance of tumors. The developed MA-mediated delivery system may hold great promise for enhanced tumor delivery of other contrast agents or nanomedicines for precision cancer nanomedicine applications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dezhi Feng ◽  
Jing Su ◽  
Yi Xu ◽  
Guifang He ◽  
Chenguang Wang ◽  
...  

AbstractProstate-specific antigen (PSA) is the most widely used biomarker for the early diagnosis of prostate cancer. Existing methods for PSA detection are burdened with some limitations and require improvement. Herein, we developed a novel microfluidic–electrochemical (μFEC) detection system for PSA detection. First, we constructed an electrochemical biosensor based on screen-printed electrodes (SPEs) with modification of gold nanoflowers (Au NFs) and DNA tetrahedron structural probes (TSPs), which showed great detection performance. Second, we fabricated microfluidic chips by DNA TSP-Au NF-modified SPEs and a PDMS layer with designed dense meandering microchannels. Finally, the μFEC detection system was achieved based on microfluidic chips integrated with the liquid automatic conveying unit and electrochemical detection platform. The μFEC system we developed acquired great detection performance for PSA detection in PBS solution. For PSA assays in spiked serum samples of the μFEC system, we obtained a linear dynamic range of 1–100 ng/mL with a limit of detection of 0.2 ng/mL and a total reaction time <25 min. Real serum samples of prostate cancer patients presented a strong correlation between the “gold-standard” chemiluminescence assays and the μFEC system. In terms of operation procedure, cost, and reaction time, our method was superior to the current methods for PSA detection and shows great potential for practical clinical application in the future.


NANO ◽  
2021 ◽  
pp. 2150037
Author(s):  
Lijie Yang ◽  
Jinhua Wang ◽  
Liying Sun ◽  
Yisi Zhang ◽  
Peng Huang ◽  
...  

Gold nanoparticles are promising dual agents for combined photothermal-radiotherapy of cancer. Nevertheless, the shape effects of gold nanoparticles on photothermal conversion efficiency and radiosensitization have not been completely revealed. To address this knowledge gap, different shapes of gold nanoparticles including gold nanospheres (GNSs), gold nanorods (GNRs), gold nanocages (GNCs) and gold nanoflowers (GNFs) were synthesized. Despite being subjected to the same modification with poly (ethylene glycol) (PEG), these gold nanoparticles showed different cellular uptake efficiencies: GNFs[Formula: see text][Formula: see text][Formula: see text]GNSs[Formula: see text][Formula: see text][Formula: see text]GNCs[Formula: see text][Formula: see text][Formula: see text]GNRs. Moreover, GNRs, GNCs and GNFs could convert near-infrared (NIR) light to heat and GNFs displayed the highest photothermal conversion efficiency, whereas GNSs showed poor photothermal effects due to the weak NIR absorption. The highest uptake efficiency as well as the best photothermal conversion ability led to GNFs to exhibit the best photothermal therapeutic effect. Furthermore, all the gold nanoparticles could be used as radiosensitizers to improve radiotherapeutic effect. Among these nanoparticles, GNFs showed the best radiation enhancement effect because of their highest uptake efficiency. Furthermore, a higher accumulation of GNFs in tumor tissues was observed than those of other shaped gold nanoparticles. Importantly, our in vitro and in vivo comparative studies revealed that GNFs possessed the strongest anticancer effect in combined photothermal-radiotherapy. Hence, compared to gold nanoparticles with other shapes, the GNFs might be more desirable dual agents for highly efficient combined photothermal-radiotherapy.


Sign in / Sign up

Export Citation Format

Share Document