1H NMR-Based Metabolomic Approach for Understanding the Fermentation Behaviors of Wine Yeast Strains

2009 ◽  
Vol 81 (3) ◽  
pp. 1137-1145 ◽  
Author(s):  
Hong-Seok Son ◽  
Geum-Sook Hwang ◽  
Ki Myong Kim ◽  
Eun-Young Kim ◽  
Frans van den Berg ◽  
...  
Author(s):  
Chiara Roberta Girelli ◽  
Francesca Serio ◽  
Rita Accogli ◽  
Federica Angilè ◽  
Antonella De Donno ◽  
...  

Background: Plants of genus Cichorium are known for their therapeutic and nutraceutical properties determined by a wealth of phytochemical substances contained in the whole plant. The aim of this paper was to characterize the metabolic profiles of local Salento chicory (Cichorium intybus L.) varieties (“Bianca”, “Galatina”, “Leccese”, and “Otranto”) in order to describe their metabolites composition together with possible bioactivity and health beneficial properties. Methods: The investigation was performed by 1H-NMR spectroscopy and Multivariate Analysis (MVA), by which the metabolic profiles of the samples were easily obtained and compared. Results: The supervised Partial Least Squares Discriminant Analysis (PLS-DA) analysis showed as “Bianca” and “Galatina” samples grouped together separated by “Leccese” and “Otranto” varieties. A different content of free amino acids and organic acids was observed among the varieties. In particular a high content of cichoric and monocaffeoyl tartaric acid was observed for the “Leccese” variety. The presence of secondary metabolites adds significant interest in the investigation of Cichorium inthybus, as this vegetable may benefit human health when incorporated into the diet. Conclusions: The 1H-NMR (Nuclear Magnetic Resonance Spectroscopy) based characterization of Salento chicory varieties allowed us to determine the potential usefulness and nutraceutical properties of the product, also providing a method to guarantee its authenticity on a molecular scale.


Metabolomics ◽  
2013 ◽  
Vol 9 (6) ◽  
pp. 1181-1191 ◽  
Author(s):  
Shatakshi Srivastava ◽  
Raja Roy ◽  
Santosh Kumar ◽  
Hari Om Gupta ◽  
Devendra Singh ◽  
...  

2013 ◽  
Vol 80 (2) ◽  
pp. 704-713 ◽  
Author(s):  
Estéfani García-Ríos ◽  
Alicia Gutiérrez ◽  
Zoel Salvadó ◽  
Francisco Noé Arroyo-López ◽  
José Manuel Guillamon

ABSTRACTThe effect of the main environmental factors governing wine fermentation on the fitness of industrial yeast strains has barely received attention. In this study, we used the concept of fitness advantage to measure how increasing nitrogen concentrations (0 to 200 mg N/liter), ethanol (0 to 20%), and temperature (4 to 45°C) affects competition among four commercial wine yeast strains (PDM, ARM, RVA, and TTA). We used a mathematical approach to model the hypothetical time needed for the control strain (PDM) to out-compete the other three strains in a theoretical mixed population. The theoretical values obtained were subsequently verified by competitive mixed fermentations in both synthetic and natural musts, which showed a good fit between the theoretical and experimental data. Specifically, the data show that the increase in nitrogen concentration and temperature values improved the fitness advantage of the PDM strain, whereas the presence of ethanol significantly reduced its competitiveness. However, the RVA strain proved to be the most competitive yeast for the three enological parameters assayed. The study of the fitness of these industrial strains is of paramount interest for the wine industry, which uses them as starters of their fermentations. Here, we propose a very simple method to model the fitness advantage, which allows the prediction of the competitiveness of one strain with respect to different abiotic factors.


1977 ◽  
Vol 23 (9) ◽  
pp. 207-212
Author(s):  
E. MINÁRIK
Keyword(s):  

2003 ◽  
Vol 22 (1) ◽  
pp. 31-43
Author(s):  
I. S. Pretorius

The widening gap between wine production and wine consumption, the shift of consumer preferences away from basic commodity wine to top quality wine, and the gruelling competition brought about by economic globalisation call for a total revolution in  the magical world of wine. In the process of transforming the wine industry from a production-driven industry to a market-orientated enterprise, there is an increasing dependence on, amongst others, biotechnological innovation to launch the wine industry with a quantum leap across the formidable market challenges of the 21st century. Market-orientated designer grape cultivars and wine yeast strains are currently being genetically programmed with surgical precision for the cost-competitive production of high quality grapes and wine with relatively minimal resource inputs and a low environmental impact. With regard to Grapevine Biotechnology, this entails the establishment of stress tolerant and disease resistant varieties of Vitis vinifera with increased productivity, efficiency, sustainability and environmental friendliness, especially regarding improved pest and disease control, water use efficiency and grape quality. With regard to Wine Yeast Biotechnology, the emphasis is on the development of Saccharomyces cerevisiae strains with improved fermentation, processing and biopreservation abilities, and capacities for an increase in the wholesomeness and sensory quality of wine. The successful commercialisation of transgenic grape cultivars and wine yeasts depends on a number of scientific, technical, safety, ethical, legal, economic and marketing factors, and it therefore will be unwise to entertain high expectations in the short term. However, in the light of the phenomenal potential advantages of tailor-made grape varieties and yeast strains, it would be equally self-destructive in the long term if this strategically important “life insurance policy” is not taken out by the wine industry. This overview highlights the most important examples of the way in which V. vinifera grape varieties and S. cerevisiae wine yeast strains are currently being designed with surgical precision on the basis of market demand for the cost-effective, sustainable and environmentally friendly production of healthy, top quality grapes and wine.


2016 ◽  
Vol 81 (13) ◽  
pp. 1650-1668 ◽  
Author(s):  
M. A. Eldarov ◽  
S. A. Kishkovskaia ◽  
T. N. Tanaschuk ◽  
A. V. Mardanov

Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 443 ◽  
Author(s):  
Păucean ◽  
Man ◽  
Chiş ◽  
Mureşan ◽  
Pop ◽  
...  

Usually, aromatic yeasts are designed to ferment wheat substrates for baking purposes but identification of new substrates for these strains and consequently new formulations for dough could lead to diversified bakery products with improved nutritional qualities and specific sensorial properties. The purpose of our study was to optimize the fermentation of quinoa and amaranth flours with non-conventional yeast strains in order to obtain a preferment with high potential in enhancing nutritional, textural and sensorial features of white wheat bread. Two biotypes of Saccharomyces cerevisiae yeast—a wine yeast strain and a beer yeast strain—commercialized for their aromatic properties were used. Both aromatic yeast strains revealed good performance on fermenting pseudocereal substrates. Utilization of the obtained preferment in white wheat breadmaking led to bread with higher protein, fibres, mineral, total polyphenols content, with specific texture and aroma profile and high consumers’ acceptability.


2020 ◽  
Vol 331 ◽  
pp. 127351
Author(s):  
Liliana Lalaleo ◽  
Diego Hidalgo ◽  
Miguel Valle ◽  
William Calero-Cáceres ◽  
Rosa M. Lamuela-Raventós ◽  
...  
Keyword(s):  
1H Nmr ◽  

2018 ◽  
Vol 106 ◽  
pp. 263-270 ◽  
Author(s):  
Nayelli Villalón-López ◽  
José I. Serrano-Contreras ◽  
Darío I. Téllez-Medina ◽  
L. Gerardo Zepeda

Sign in / Sign up

Export Citation Format

Share Document