Low-Cost and Convenient Microchannel Resistance Biosensing Platform by Directly Translating Biorecognition into a Current Signal

Author(s):  
Huiyu He ◽  
Rongbin Nie ◽  
Peng Lu ◽  
Xuewen Peng ◽  
Xiaohan Li ◽  
...  
Keyword(s):  
Low Cost ◽  
Author(s):  
AP Pandit ◽  
Neha Bhagatkar ◽  
Mallika Ramachandran

ABSTRACT The potential size of India's dental market is vast and is expected to become one of the largest single country markets for overseas dental products and materials. The total market for the dental equipment and materials is estimated to be around US$ 90 million annually. There are more than 1, 80,000 dental professionals in India, 297 dental institutes and over 5,000 dental laboratories. Thus, there is a huge potential for the market of personal protective equipment (PPE) used for infection control in dentistry. India's market for dental products is extremely dynamic, with a current estimated growth rate of between 25 and 30%. Overall, the dental market is expected to grow by 20%.1 The personal protective equipment used in the practice of dentistry in India. Since dentistry is predominantly a surgical discipline, it leads to exposure to the pathogenic microorganisms harbored in blood, body fluids and other potentially infectious material. Thus, the use of adequate and good quality PPE is imperative for infection control in dental practice. With the growing potential of India's dental market, the growth of the market for PPE is inevitable. But, it is equally important to raise the awareness among dental community about good quality products adhering to required standards to prevent the usage of low-cost, uncertified and sub-standard products that decrease the safety levels of personnel. The present study is conducted with a view to observe the personal protective equipment used for infection control in dental practices. How to cite this article Pandit AP, Bhagatkar N, Ramachandran M. Personal Protective Equipment used for Infection Control in Dental Practices. Int J Res Foundation Hosp Healthc Adm 2015;3(1):10-12.


2019 ◽  
Vol 10 ◽  
pp. 281-293 ◽  
Author(s):  
Donghui Zheng ◽  
Man Li ◽  
Yongyan Li ◽  
Chunling Qin ◽  
Yichao Wang ◽  
...  

Developing a facile and environmentally friendly approach to the synthesis of nanostructured Ni(OH)2 electrodes for high-performance supercapacitor applications is a great challenge. In this work, we report an extremely simple route to prepare a Ni(OH)2 nanopetals network by immersing Ni nanofoam in water. A binder-free composite electrode, consisting of Ni(OH)2 nanopetals network, Ni nanofoam interlayer and Ni-based metallic glass matrix (Ni(OH)2/Ni-NF/MG) with sandwich structure and good flexibility, was designed and finally achieved. Microstructure and morphology of the Ni(OH)2 nanopetals were characterized. It is found that the Ni(OH)2 nanopetals interweave with each other and grow vertically on the surface of Ni nanofoam to form an “ion reservoir”, which facilitates the ion diffusion in the electrode reaction. Electrochemical measurements show that the Ni(OH)2/Ni-NF/MG electrode, after immersion in water for seven days, reveals a high volumetric capacitance of 966.4 F/cm3 at a current density of 0.5 A/cm3. The electrode immersed for five days exhibits an excellent cycling stability (83.7% of the initial capacity after 3000 cycles at a current density of 1 A/cm3). Furthermore, symmetric supercapacitor (SC) devices were assembled using ribbons immersed for seven days and showed a maximum volumetric energy density of ca. 32.7 mWh/cm3 at a power density of 0.8 W/cm3, and of 13.7 mWh/cm3 when the power density was increased to 2 W/cm3. The fully charged SC devices could light up a red LED. The work provides a new idea for the synthesis of nanostructured Ni(OH)2 by a simple approach and ultra-low cost, which largely extends the prospect of commercial application in flexible or wearable devices.


2003 ◽  
Vol 769 ◽  
Author(s):  
YongWoo Choi ◽  
Ioannis Kymissis ◽  
Annie Wang ◽  
Akintunde I. Akinwande

AbstractTextiles are a suitable substrate for large area, flexible and wearable electronics because of their excellent flexibility, mechanical properties and low cost manufacturability. The ability to fabricate active devices on fiber is a key step for achieving large area and flexible electronic structures. We fabricated transistors and inverters with a-Si film and pentacene film on Kapton film and cut them into fibers. The a-Si TFT showed a threshold voltage of 8.5 V and on/off ratio of 103 at a drain voltage of 10 V. These are similar to the characteristics of a TFT fabricated on a glass substrate at the same time. The maximum gain of the inverter with an enhancement n-type load was 6.45 at a drain voltage of 10 V. The pentacene OTFT showed a threshold voltage of -8 V and on/off ratio of 103 at a drain voltage of -30 V. The inverter with a depletion p-type load showed a voltage inversion but the inversion occurred at the wrong voltage. The antifuse was successfully programmed with a voltage pulse and also a current pulse. The resistance decreased from 10 GΩ to 2 kΩ after the programming.


An ozone sonde capable of measuring and transmitting the local ozone concentration has been developed for the I. G. Y. and is described in some detail. A continuous electrochemical detector measures the ozone concentration, providing a d. c. electric current of 0 to 5 μ A according to the amount of ozone in the air passed through it. This output current is telemetered by a current-controlled variable inductance which is interchangeable with a standard inductance coil in a Kew radiosonde. The element is of low cost, weighs about 600 g and requires very limited auxiliary equipment for its use. Sixty-five successful ascents have been made and the results of the European ascents are given.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2406
Author(s):  
Gustavo O. Fortes ◽  
Marcos A. S. Mendes ◽  
Porfírio C. Cortizo

The use of series connected IGBTs is still a current subject in literature, despite such a discussion having started in the 1990s. Though countless academic studies, there are currently no available commercial products on the market for medium voltage inverters (up to 4.16 kV) and lower power (up to 1 MW) using this technology. This is related to the difficulty of ensuring the dynamic and static voltage sharing between IGBTs, giving rise to relatively expensive and complex firing circuits, when compared to the components they intend to control. Therefore, this article aims to present a simple and low-cost alternative, still effective for driving low voltage series-connected IGBTs, specifically for the encapsulation TO-247 type. Experimental results are presented showing the behavior of the solution under several operating conditions.


Author(s):  
Jose Roberto Diaz Reza ◽  
Deysi Guadalupe Márquez Gayosso ◽  
Julio Blanco Fernández ◽  
Emilio Jiménez Macías ◽  
Juan Carlos Sáenz Diez Muro

Short changeover times have always been critical in manufacturing and are a necessity nowadays in all types of industries, due every wasted minute means inefficiency. Single Minute Exchange of Dies (SMED) is a methodology developed by Shigeo Shingo in 1985, which seeks to reduce the setup time of a machine to less than ten minutes (Shingo, 1985). It provides a rapid and efficient way of converting a manufacturing process from a current product that is been running in the production process, to the next product (Tharisheneprem, 2008), aimed always to decrease the setup time in industrial machinery, given flexibility in product and their characteristics. Through this research, we found that we can achieve some benefits through the implementation of the SMED methodology such as: the reduction of changeover time up to 90% with moderate investments (Cakmakci, 2009), reduce waste and increase quality, it makes low cost flexible operations possible.


2020 ◽  
pp. 1870-1889
Author(s):  
Jose Roberto Diaz Reza ◽  
Deysi Guadalupe Márquez Gayosso ◽  
Julio Blanco Fernández ◽  
Emilio Jiménez Macías ◽  
Juan Carlos Sáenz Diez Muro

Short changeover times have always been critical in manufacturing and are a necessity nowadays in all types of industries, due every wasted minute means inefficiency. Single Minute Exchange of Dies (SMED) is a methodology developed by Shigeo Shingo in 1985, which seeks to reduce the setup time of a machine to less than ten minutes (Shingo, 1985). It provides a rapid and efficient way of converting a manufacturing process from a current product that is been running in the production process, to the next product (Tharisheneprem, 2008), aimed always to decrease the setup time in industrial machinery, given flexibility in product and their characteristics. Through this research, we found that we can achieve some benefits through the implementation of the SMED methodology such as: the reduction of changeover time up to 90% with moderate investments (Cakmakci, 2009), reduce waste and increase quality, it makes low cost flexible operations possible.


Sign in / Sign up

Export Citation Format

Share Document