Simple and Highly Sensitive Molecular Diagnosis of Zika Virus by Lateral Flow Assays

2016 ◽  
Vol 88 (24) ◽  
pp. 12272-12278 ◽  
Author(s):  
Dohwan Lee ◽  
Yong Shin ◽  
Seok Chung ◽  
Kyo Seon Hwang ◽  
Dae Sung Yoon ◽  
...  
Nanoscale ◽  
2016 ◽  
Vol 8 (46) ◽  
pp. 19204-19210 ◽  
Author(s):  
Yunfei Zhao ◽  
Yin Huang ◽  
Xiangwei Zhao ◽  
John F. McClelland ◽  
Meng Lu

Nanoscale ◽  
2017 ◽  
Vol 9 (12) ◽  
pp. 4310-4310
Author(s):  
Yunfei Zhao ◽  
Yin Huang ◽  
Xiangwei Zhao ◽  
John F. McClelland ◽  
Meng Lu

RSC Advances ◽  
2021 ◽  
Vol 11 (29) ◽  
pp. 17800-17808
Author(s):  
Gna Ahn ◽  
SeonHyung Lee ◽  
Se Hee Lee ◽  
Yun Hee Baek ◽  
Min-Suk Song ◽  
...  

Our study suggest that ZIKV RT-LAMP combined with LFA could serve as a rapid, accurate, and independent point-of-care detection method for ZIKV outbreaks.


2019 ◽  
Author(s):  
Veeren Chauhan ◽  
Mohamed M Elsutohy ◽  
C Patrick McClure ◽  
Will Irving ◽  
Neil Roddis ◽  
...  

<p>Enteroviruses are a ubiquitous mammalian pathogen that can produce mild to life-threatening disease. Bearing this in mind, we have developed a rapid, accurate and economical point-of-care biosensor that can detect a nucleic acid sequences conserved amongst 96% of all known enteroviruses. The biosensor harnesses the physicochemical properties of gold nanoparticles and aptamers to provide colourimetric, spectroscopic and lateral flow-based identification of an exclusive enteroviral RNA sequence (23 bases), which was identified through in silico screening. Aptamers were designed to demonstrate specific complementarity towards the target enteroviral RNA to produce aggregated gold-aptamer nanoconstructs. Conserved target enteroviral nucleic acid sequence (≥ 1x10<sup>-7</sup> M, ≥1.4×10<sup>-14</sup> g/mL), initiates gold-aptamer-nanoconstructs disaggregation and a signal transduction mechanism, producing a colourimetric and spectroscopic blueshift (544 nm (purple) > 524 nm (red)). Furthermore, lateral-flow-assays that utilise gold-aptamer-nanoconstructs were unaffected by contaminating human genomic DNA, demonstrated rapid detection of conserved target enteroviral nucleic acid sequence (< 60 s) and could be interpreted with a bespoke software and hardware electronic interface. We anticipate our methodology will translate in-silico screening of nucleic acid databases to a tangible enteroviral desktop detector, which could be readily translated to related organisms. This will pave-the-way forward in the clinical evaluation of disease and complement existing strategies at overcoming antimicrobial resistance.</p>


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3358
Author(s):  
Donato Calabria ◽  
Maria Maddalena Calabretta ◽  
Martina Zangheri ◽  
Elisa Marchegiani ◽  
Ilaria Trozzi ◽  
...  

Paper-based lateral-flow immunoassays (LFIAs) have achieved considerable commercial success and their impact in diagnostics is continuously growing. LFIA results are often obtained by visualizing by the naked eye color changes in given areas, providing a qualitative information about the presence/absence of the target analyte in the sample. However, this platform has the potential to provide ultrasensitive quantitative analysis for several applications. Indeed, LFIA is based on well-established immunological techniques, which have known in the last year great advances due to the combination of highly sensitive tracers, innovative signal amplification strategies and last-generation instrumental detectors. All these available progresses can be applied also to the LFIA platform by adapting them to a portable and miniaturized format. This possibility opens countless strategies for definitively turning the LFIA technique into an ultrasensitive quantitative method. Among the different proposals for achieving this goal, the use of enzyme-based immunoassay is very well known and widespread for routine analysis and it can represent a valid approach for improving LFIA performances. Several examples have been recently reported in literature exploiting enzymes properties and features for obtaining significative advances in this field. In this review, we aim to provide a critical overview of the recent progresses in highly sensitive LFIA detection technologies, involving the exploitation of enzyme-based amplification strategies. The features and applications of the technologies, along with future developments and challenges, are also discussed.


2021 ◽  
Author(s):  
Jenna M. DeSousa ◽  
Micaella Z. Jorge ◽  
Hayley B. Lindsay ◽  
Frederick R. Haselton ◽  
David W. Wright ◽  
...  

This work demonstrates the first use of ICP-OES to quantitatively analyze gold content on lateral flow assays.


Author(s):  
Antonia Perju ◽  
Nongnoot Wongkaew

AbstractLateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3732
Author(s):  
Agnieszka Dabrowska ◽  
Aleksandra Milewska ◽  
Joanna Ner-Kluza ◽  
Piotr Suder ◽  
Krzysztof Pyrc

Mass spectrometry (MS) used in proteomic approaches is able to detect hundreds of proteins in a single assay. Although undeniable high analytical power of MS, data acquired sometimes lead to confusing results, especially during a search of very selective, unique interactions in complex biological matrices. Here, we would like to show an example of such confusing data, providing an extensive discussion on the observed phenomenon. Our investigations focus on the interaction between the Zika virus NS3 protease, which is essential for virus replication. This enzyme is known for helping to remodel the microenvironment of the infected cells. Several reports show that this protease can process cellular substrates and thereby modify cellular pathways that are important for the virus. Herein, we explored some of the targets of NS3, clearly shown by proteomic techniques, as processed during infection. Unfortunately, we could not confirm the biological relevance of protein targets for viral infections detected by MS. Thus, although mass spectrometry is highly sensitive and useful in many instances, also being able to show directions where cell/virus interaction occurs, we believe that deep recognition of their biological role is essential to receive complete insight into the investigated process.


Sign in / Sign up

Export Citation Format

Share Document