scholarly journals A Multifunctional Reactor with Dry-Stored Reagents for Enzymatic Amplification of Nucleic Acids

2017 ◽  
Vol 90 (2) ◽  
pp. 1209-1216 ◽  
Author(s):  
Jinzhao Song ◽  
Changchun Liu ◽  
Michael G. Mauk ◽  
Jing Peng ◽  
Thomas Schoenfeld ◽  
...  
RSC Advances ◽  
2016 ◽  
Vol 6 (83) ◽  
pp. 80296-80301
Author(s):  
Yue Zhao ◽  
Huaqing Liu ◽  
Feng Chen ◽  
Min Bai ◽  
Yongxi Zhao

A fidelity quantification of mercury(ii) ion based on nucleic acids amplification is developed via circumventing biothiols-induced sequestration.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Changchun Liu ◽  
Mohamed M. Sadik ◽  
Michael G. Mauk ◽  
Paul H. Edelstein ◽  
Frederic D. Bushman ◽  
...  

The Analyst ◽  
2010 ◽  
Vol 135 (8) ◽  
pp. 2069 ◽  
Author(s):  
Liang Cui ◽  
Guoliang Ke ◽  
Chunming Wang ◽  
Chaoyong James Yang

2018 ◽  
Author(s):  
Jinzhao Song ◽  
Jorrit W. Hegge ◽  
Michael G. Mauk ◽  
Neha Bhagwat ◽  
Jacob E. Till ◽  
...  

ABSTRACTCharacterization of disease-associated, cell-free nucleic acids (liquid biopsy) provides a powerful, minimally-invasive means for early detection, genotyping, and personalized therapy; but is challenged by alleles of interest differing by single nucleotide from and residing among large abundance of wild-type alleles. We describe a new multiplexed enrichment assay, dubbed NAVIGATER, that utilizes short nucleic acid-guided endonucleases Argonaute (Ago), derived from the bacterium Thermus thermophilus (TtAgo), to specifically cleave complementary DNA and RNA while sparing alleles having single nucleotide mismatches with the guides. NAVIGATER greatly increases the fractions of rare alleles of interest in samples and enhances sensitivity of downstream procedures such ddPCR, sequencing, and clamped enzymatic amplification. We demonstrate 60-fold enrichment of KRAS G12D in blood samples from pancreatic cancer patients and detection of KRAS, EGFR, and BRAF mutants with XNA-PCR at 0.01% fraction.


1993 ◽  
Vol 21 (3) ◽  
pp. 577-583 ◽  
Author(s):  
Christophe Pannetier ◽  
Sylvie Delassus ◽  
Sylvie Darche ◽  
Cécile Saucier ◽  
Philippe Kourilsky

Author(s):  
Norman Davidson

The basic protein film technique for mounting nucleic acids for electron microscopy has proven to be a general and powerful tool for the working molecular biologist in characterizing different nucleic acids. It i s possible to measure molecular lengths of duplex and single-stranded DNAs and RNAs. In particular, it is thus possible to as certain whether or not the nucleic acids extracted from a particular source are or are not homogeneous in length. The topological properties of the polynucleotide chain (linear or circular, relaxed or supercoiled circles, interlocked circles, etc. ) can also be as certained.


Author(s):  
J. A. Pollock ◽  
M. Martone ◽  
T. Deerinck ◽  
M. H. Ellisman

Localization of specific proteins in cells by both light and electron microscopy has been facilitate by the availability of antibodies that recognize unique features of these proteins. High resolution localization studies conducted over the last 25 years have allowed biologists to study the synthesis, translocation and ultimate functional sites for many important classes of proteins. Recently, recombinant DNA techniques in molecular biology have allowed the production of specific probes for localization of nucleic acids by “in situ” hybridization. The availability of these probes potentially opens a new set of questions to experimental investigation regarding the subcellular distribution of specific DNA's and RNA's. Nucleic acids have a much lower “copy number” per cell than a typical protein, ranging from one copy to perhaps several thousand. Therefore, sensitive, high resolution techniques are required. There are several reasons why Intermediate Voltage Electron Microscopy (IVEM) and High Voltage Electron Microscopy (HVEM) are most useful for localization of nucleic acids in situ.


Author(s):  
Dimitrij Lang

The success of the protein monolayer technique for electron microscopy of individual DNA molecules is based on the prevention of aggregation and orientation of the molecules during drying on specimen grids. DNA adsorbs first to a surface-denatured, insoluble cytochrome c monolayer which is then transferred to grids, without major distortion, by touching. Fig. 1 shows three basic procedures which, modified or not, permit the study of various important properties of nucleic acids, either in concert with other methods or exclusively:1) Molecular weights relative to DNA standards as well as number distributions of molecular weights can be obtained from contour length measurements with a sample standard deviation between 1 and 4%.


Author(s):  
Stephen D. Jett

The electrophoresis gel mobility shift assay is a popular method for the study of protein-nucleic acid interactions. The binding of proteins to DNA is characterized by a reduction in the electrophoretic mobility of the nucleic acid. Binding affinity, stoichiometry, and kinetics can be obtained from such assays; however, it is often desirable to image the various species in the gel bands using TEM. Present methods for isolation of nucleoproteins from gel bands are inefficient and often destroy the native structure of the complexes. We have developed a technique, called “snapshot blotting,” by which nucleic acids and nucleoprotein complexes in electrophoresis gels can be electrophoretically transferred directly onto carbon-coated grids for TEM imaging.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


Sign in / Sign up

Export Citation Format

Share Document