scholarly journals In Vivo Biochemistry: Single-Cell Dynamics of Cyclic Di-GMP in Escherichia coli in Response to Zinc Overload

Biochemistry ◽  
2017 ◽  
Vol 57 (1) ◽  
pp. 108-116 ◽  
Author(s):  
Jongchan Yeo ◽  
Andrew B. Dippel ◽  
Xin C. Wang ◽  
Ming C. Hammond
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yao-Kuan Wang ◽  
Ekaterina Krasnopeeva ◽  
Ssu-Yuan Lin ◽  
Fan Bai ◽  
Teuta Pilizota ◽  
...  

AbstractFor in vivo, single-cell imaging bacterial cells are commonly immobilised via physical confinement or surface attachment. Different surface attachment methods have been used both for atomic force and optical microscopy (including super resolution), and some have been reported to affect bacterial physiology. However, a systematic comparison of the effects these attachment methods have on the bacterial physiology is lacking. Here we present such a comparison for bacterium Escherichia coli, and assess the growth rate, size and intracellular pH of cells growing attached to different, commonly used, surfaces. We demonstrate that E. coli grow at the same rate, length and internal pH on all the tested surfaces when in the same growth medium. The result suggests that tested attachment methods can be used interchangeably when studying E. coli physiology.


2021 ◽  
Author(s):  
Manuel Halte ◽  
Mirka E. Wörmann ◽  
Maxim Bogisch ◽  
Marc Erhardt ◽  
Natalia Tschowri

AbstractThe widespread bacterial second messenger bis-(3’-5’)-cyclic diguanosine monophosphate (c-di-GMP) is an important regulator of biofilm formation, virulence and cell differentiation. C-di-GMP-specific biosensors that allow detection and visualization of c-di-GMP levels in living cells are key to our understanding of how c-di-GMP fluctuations drive cellular responses. Here, we describe a novel c-di-GMP biosensor, CensYBL, that is based on c-di-GMP-induced dimerization of the effector protein BldD from Streptomyces resulting in bimolecular fluorescence complementation of split-YPet fusion proteins. As a proof-of-principle, we demonstrate that CensYBL is functional in detecting fluctuations in intracellular c-di-GMP levels in the Gram-negative model bacteria Escherichia coli and Salmonella enterica serovar Typhimurium. Using deletion mutants of c-di-GMP diguanylate cyclases and phosphodiesterases, we show that c-di-GMP dependent dimerization of CBldD-YPet results in fluorescence complementation reflecting intracellular c-di-GMP levels. Overall, we demonstrate that the CensYBL biosensor is a user-friendly and versatile tool that allows to investigate c-di-GMP variations using single-cell and population-wide experimental set-ups.ImportanceThe second messenger c-di-GMP controls various bacterial functions including development of resistant biofilm communities and transition into dormant spores. In vivo detection of c-di-GMP levels is therefore crucial for a better understanding of how intracellular c-di-GMP levels induce changes of bacterial physiology. Here, we describe the design of a novel c-di-GMP biosensor and demonstrate its effective application in investigating fluctuations in intracellular c-di-GMP levels in Escherichia coli and Salmonella enterica serovar Typhimurium on a population-based and single-cell level.


2019 ◽  
Author(s):  
Rana Amini ◽  
Anastasia Labudina ◽  
Caren Norden

ABSTRACTDevelopmental programs that arrange cells and tissues into patterned organs are remarkably robust. In the developing vertebrate retina for example, neurons reproducibly assemble into distinct layers giving the mature organ its overall structured appearance. This stereotypic neuronal arrangement, termed lamination, is important for efficient neuronal connectivity. While retinal lamination is conserved in many vertebrates including humans, how it emerges from single cell behaviour is not fully understood. To shed light on this question, we here investigated the formation of the retinal horizontal cell layer. Using in vivo light sheet imaging of the developing zebrafish retina, we generated a comprehensive quantitative analysis of horizontal single cell behaviour from birth to final positioning. Interestingly, we find that all parameters analyzed including cell cycle dynamics, migration paths and kinetics as well as sister cell dispersal are very heterogeneous. Thus, horizontal cells show individual non-stereotypic behaviour before final positioning. Yet, these initially stochastic cell dynamics always generate the correct laminar pattern. Consequently, our data shows that lamination of the vertebrate retina contains a yet underexplored extent of single cell stochasticity.


2004 ◽  
Vol 200 (7) ◽  
pp. 847-856 ◽  
Author(s):  
Mark J. Miller ◽  
Olga Safrina ◽  
Ian Parker ◽  
Michael D. Cahalan

The adaptive immune response is initiated in secondary lymphoid organs by contact between antigen-bearing dendritic cells (DCs) and antigen-specific CD4+ T cells. However, there is scant information regarding the single cell dynamics of this process in vivo. Using two-photon microscopy, we imaged the real-time behavior of naive CD4+ T cells and in vivo–labeled DCs in lymph nodes during a robust T cell response. In the first 2 h after entry into lymph nodes, T cells made short-lived contacts with antigen-bearing DCs, each contact lasting an average of 11–12 min and occurring mainly on dendrites. Altered patterns of T cell motility during this early stage of antigen recognition promoted serial engagement with several adjacent DCs. Subsequently, T cell behavior progressed through additional distinct stages, including long-lived clusters, dynamic swarms, and finally autonomous migration punctuated by cell division. These observations suggest that the immunological synapse in native tissues is remarkably fluid, and that stable synapses form only at specific stages of antigen presentation to T cells. Furthermore, the serial nature of these interactions implies that T cells activate by way of multiple antigen recognition events.


2019 ◽  
Author(s):  
Shreyansh Jain ◽  
Victoire M.L. Cachoux ◽  
Gautham H.N.S. Narayana ◽  
Simon de Beco ◽  
Joseph D’Alessandro ◽  
...  

The directed migration of cell collectives is essential in various physiological processes, such as epiboly, intestinal epithelial turnover, and convergent extension during morphogenesis as well as during pathological events like wound healing and cancer metastasis1,2. Collective cell migration leads to the emergence of coordinated movements over multiple cells. Our current understanding emphasizes that these movements are mainly driven by large-scale transmission of signals through adherens junctions3,4. In this study, we show that collective movements of epithelial cells can be triggered by polarity signals at the single cell level through the establishment of coordinated lamellipodial protrusions. We designed a minimalistic model system to generate one-dimensional epithelial trains confined in ring shaped patterns that recapitulate rotational movements observed in vitro in cellular monolayers and in vivo in genitalia or follicular cell rotation5–7. Using our system, we demonstrated that cells follow coordinated rotational movements after the establishment of directed Rac1-dependent polarity over the entire monolayer. Our experimental and numerical approaches show that the maintenance of coordinated migration requires the acquisition of a front-back polarity within each single cell but does not require the maintenance of cell-cell junctions. Taken together, these unexpected findings demonstrate that collective cell dynamics in closed environments as observed in multiple in vitro and in vivo situations5,6,8,9 can arise from single cell behavior through a sustained memory of cell polarity.


Author(s):  
Ирина Владимировна Акулина ◽  
Светлана Ивановна Павлова ◽  
Ирина Семеновна Степаненко ◽  
Назира Сунагатовна Карамова ◽  
Александр Владиславович Сергеев ◽  
...  
Keyword(s):  

Проведено токсикологическое исследование соединений с антибактериальными свойствами из группы терпенов ментанового ряда в условиях in vitro и in vivo: лимонена (B34), его производного (+)-1,2-оксида лимонена (B60) и серосодержащего монотерпенового соединения 2-(1’-гидрокси-4’-изопренил-1’-метилциклогексил-2’-тио)метилэтаноата (B65). В условиях in vitro (культура опухолевых клеток HeLa) изучаемые монотерпены в диапазоне концентраций 2 – 200 мкг/мл обладали цитотоксичностью. Ингибирующая концентрация (ИК50) для B34 составила 231 (167 – 295) мкг/мл, для B60 – 181 (105 – 257) мкг/мл, ИК50 B65 – 229 (150 – 308) мкг/мл. Исследование генотоксичности показало, что B34 и B65 в диапазоне концентраций 50 – 1000 мкг/мл не индуцируют SOS мутагенез в клетках Escherichia coli PQ37, тогда как B60 в концентрациях 500 и 1000 мкг/мл проявляет генотоксичность. In vivo в остром эксперименте на беспородных мышах установлена низкая токсичность B34 и его производных при различных путях введения. Наименьший показатель острой токсичности имеет B65, в связи с чем дополнительно на крысах проведено изучение его хронической токсичности. Ежедневное внутрижелудочное введение B65 в разовых дозах, составляющих 1/10 и 1/20 ЛД50 (1000 мг/кг и 500 мг/кг), в течение 1 мес не вызывало гибели животных, значимых нарушений общего состояния, изменения динамики массы тела, морфопатологических изменений. Внутрижелудочное введение B65 крысам в высокой токсической дозе 2000 мг/кг (1/5 ЛД50) в течение месяца вызывает патоморфологические изменения структуры печени.


Sign in / Sign up

Export Citation Format

Share Document