scholarly journals Comparison of Escherichia coli surface attachment methods for single-cell microscopy

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yao-Kuan Wang ◽  
Ekaterina Krasnopeeva ◽  
Ssu-Yuan Lin ◽  
Fan Bai ◽  
Teuta Pilizota ◽  
...  

AbstractFor in vivo, single-cell imaging bacterial cells are commonly immobilised via physical confinement or surface attachment. Different surface attachment methods have been used both for atomic force and optical microscopy (including super resolution), and some have been reported to affect bacterial physiology. However, a systematic comparison of the effects these attachment methods have on the bacterial physiology is lacking. Here we present such a comparison for bacterium Escherichia coli, and assess the growth rate, size and intracellular pH of cells growing attached to different, commonly used, surfaces. We demonstrate that E. coli grow at the same rate, length and internal pH on all the tested surfaces when in the same growth medium. The result suggests that tested attachment methods can be used interchangeably when studying E. coli physiology.

2019 ◽  
Author(s):  
Yao-Kuan Wang ◽  
Ekaterina Krasnopeeva ◽  
Ssu-Yuan Lin ◽  
Fan Bai ◽  
Teuta Pilizota ◽  
...  

ABSTRACTForin vivo, single-cell imaging bacterial cells are commonly immobilised via physical confinement or surface attachment. Different surface attachment methods have been used both for atomic force and optical microscopy (including super resolution), and some have been reported to affect bacterial physiology. However, a systematic comparison of the effects these attachment methods have on the bacterial physiology is lacking. Here we present such a comparison for bacteriumEscherichia coli, and assess the growth rate, size and intracellular pH of cells growing attached to different, commonly used, surfaces. We demonstrate thatE. coligrow at the same rate, length and internal pH on all the tested surfaces when in the same growth medium. The result suggests that tested attachment methods can be used interchangeably when studyingE. coliphysiology.


2015 ◽  
Vol 34 ◽  
pp. 61-66
Author(s):  
Kamarulazizi Ibrahim ◽  
Mohammad Hafiz Khalid ◽  
Mohamed Hassan Eisa ◽  
Mohd Nazalan Najimudin ◽  
Mohammad A. Al Rajhi ◽  
...  

In this work, a comparative study using atomic force microscopy (AFM) and field emission–scanning electron microscopy (FESEM) has been carried out to assess the morphology of single cellEscherichia colibacteria (E-coli).E-colibacteria are a major concern for public health. Attention was focused on the certain strains ofE-colibacteria, because some strains can be toxic and cause food poisoning. TheE-colibacteria have attracted much research interest because this bacterium is easily to get, cheap and rapid reproductively. Imaging ofE-colirecently, was improved by using high resolution microscopy. Current techniques for detection such as, AFM and FESEM has attracted great interest and emerging as a potentially powerful whole-organism fingerprinting tool for the rapid identification of bacteria. The obtained results of AFM and FESEM techniques have been compared to show the image quality of single cellE-coli.


2016 ◽  
Vol 82 (15) ◽  
pp. 4663-4672 ◽  
Author(s):  
Rui Xue ◽  
Yalong Liu ◽  
Qingsong Zhang ◽  
Congcong Liang ◽  
Huazhen Qin ◽  
...  

ABSTRACTTo verify the interaction mechanism between sericin andEscherichia coli, especially the morphological and structural changes in the bacterial cells, the antimicrobial activity of sericin againstE. colias a model for Gram-negative bacteria was investigated. The antibacterial activity of sericin onE. coliand the interaction mechanism were investigated in this study by analyzing the growth, integrity, and morphology of the bacterial cells following treatment with sericin. The changes in morphology and cellular compositions of bacterial cells treated with sericin were observed by an inverted fluorescence microscope, scanning electron microscopy, and transmission electron microscopy. Changes in electrical conductivity, total sugar concentration of the broth for the bacteria, and protein expression of the bacteria were determined to investigate the permeability of the cell membrane. A sericin-based hydrogel was prepared for anin vivostudy of wound dressing. The results showed that the antibacterial activity of the hydrogel increased with the increase in the concentration of sericin from 10 g/liter to 40 g/liter. The introduction of sericin induces membrane blebbing ofE. colicells caused by antibiotic action on the cell membrane. The cytoplasm shrinkage phenomenon was accompanied by blurring of the membrane wall boundaries. WhenE. colicells were treated with sericin, release of intracellular components quickly increased. The electrical conductivity assay indicated that the charged ions are reduced after exposure to sericin so that the integrity of the cell membrane is weakened and metabolism is blocked. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that sericin hinders the expression of bacterial protein. Sericin may damage the integrity of the bacterial cell membrane, thereby eventually inhibiting the growth and reproduction ofE. coli. Compared to sterile gauze, the sericin-based hydrogel promoted fibroblast cell proliferation and accelerated the formation of granulation tissues and neovessels.IMPORTANCEThe specific relationship and interaction mechanism between sericin andE. colicells were investigated and elucidated. The results show that after 12 h of treatment, sericin molecules induce membrane blebbing ofE. colicells, and the bacteria show decreases in liquidity and permeability of biological membrane, resulting in alterations in the conductivity of the culture medium and the integrity of the outer membrane. The subsequentin vivoresults demonstrate that the sericin-poly(N-isopropylacrylamide-N,N′-methylene-bis-acrylamide [NIPAm-MBA]) hydrogel accelerated wound healing compared to that with sterile gauze, which is a beneficial result for future applications in clinical medicine and the textile, food, and coating industries.


2021 ◽  
Author(s):  
Manuel Halte ◽  
Mirka E. Wörmann ◽  
Maxim Bogisch ◽  
Marc Erhardt ◽  
Natalia Tschowri

AbstractThe widespread bacterial second messenger bis-(3’-5’)-cyclic diguanosine monophosphate (c-di-GMP) is an important regulator of biofilm formation, virulence and cell differentiation. C-di-GMP-specific biosensors that allow detection and visualization of c-di-GMP levels in living cells are key to our understanding of how c-di-GMP fluctuations drive cellular responses. Here, we describe a novel c-di-GMP biosensor, CensYBL, that is based on c-di-GMP-induced dimerization of the effector protein BldD from Streptomyces resulting in bimolecular fluorescence complementation of split-YPet fusion proteins. As a proof-of-principle, we demonstrate that CensYBL is functional in detecting fluctuations in intracellular c-di-GMP levels in the Gram-negative model bacteria Escherichia coli and Salmonella enterica serovar Typhimurium. Using deletion mutants of c-di-GMP diguanylate cyclases and phosphodiesterases, we show that c-di-GMP dependent dimerization of CBldD-YPet results in fluorescence complementation reflecting intracellular c-di-GMP levels. Overall, we demonstrate that the CensYBL biosensor is a user-friendly and versatile tool that allows to investigate c-di-GMP variations using single-cell and population-wide experimental set-ups.ImportanceThe second messenger c-di-GMP controls various bacterial functions including development of resistant biofilm communities and transition into dormant spores. In vivo detection of c-di-GMP levels is therefore crucial for a better understanding of how intracellular c-di-GMP levels induce changes of bacterial physiology. Here, we describe the design of a novel c-di-GMP biosensor and demonstrate its effective application in investigating fluctuations in intracellular c-di-GMP levels in Escherichia coli and Salmonella enterica serovar Typhimurium on a population-based and single-cell level.


1982 ◽  
Vol 28 (5) ◽  
pp. 545-552 ◽  
Author(s):  
John B. Harley ◽  
Caroline J. Fetterolf ◽  
Cesar A. Bello ◽  
Joel G. Flaks

The bacterial physiology of streptonigrin toxicity was further investigated. An optimal oxygen concentration for toxicity was inferred from data showing that steptonigrin at 5 µg/mL was rapidly lethal to aerobic cultures of Escherichia coli K12 JF361, but was without effect on anaerobic cultures and was bacteriostatic to cultures incubated in 5 atm of oxygen plus 1 atm of air (5 atm O2 plus air) (1 atm = 101.325 kPa). Escherichia coli were protected from a potentially lethal concentration of streptonigrin during anaerobic incubation, whether previously grown anaerobically, aerobically, or in 5 atm O2 plus air. Superoxide dismutase activity increased with increasing oxygen tension in the medium, but was not significantly changed by a lethal concentration of streptonigrin. Although the superoxide dismutase activity was four times greater in E. coli grown in 5 atm O2 plus air than those grown in air alone, the aerobic survival in 5 µg/mL streptonigrin was identical, which suggested that superoxide dismutase was not rate limiting for toxicity. Escherichia coli K12 strains deficient in glutathione (KMBL54-129, AB1157-821, and AB1157-830) were protected from streptonigrin poisoning. Dithiothreotol (5.0 mM), diamide (1 mM), methyl viologen (1 mM), and cyanide (10 mM) protected aerobic E. coli from 5 µg/mL streptonigrin.These data are also consistent with a model of in vivo streptonigrin toxicity that requires a favorable intracellular oxidation–reduction state and an optimal concentration of molecular oxygen.


2010 ◽  
Vol 76 (17) ◽  
pp. 5785-5790 ◽  
Author(s):  
Yoshiaki Maeda ◽  
Tomoko Yoshino ◽  
Tadashi Matsunaga

ABSTRACT Escherichia coli biotin ligase can attach biotin molecules to a lysine residue of biotin acceptor peptide (BAP), and biotinylation of particular BAP-fused proteins in cells was carried out by coexpression of E. coli biotin ligase (in vivo biotinylation). This in vivo biotinylation technology has been applied for protein purification, analysis of protein localization, and protein-protein interaction in eukaryotic cells, while such studies have not been reported in bacterial cells. In this study, in vivo biotinylation of bacterial magnetic particles (BacMPs) synthesized by Magnetospirillum magneticum AMB-1 was attempted by heterologous expression of E. coli biotin ligase. To biotinylate BacMPs in vivo, BAP was fused to a BacMP surface protein, Mms13, and E. coli biotin ligase was simultaneously expressed in the truncated form lacking the DNA-binding domain. This truncation-based approach permitted the growth of AMB-1 transformants when biotin ligase was heterologously expressed. In vivo biotinylation of BAP on BacMPs was confirmed using an alkaline phosphatase-conjugated antibiotin antibody. The biotinylated BAP-displaying BacMPs were then exposed to streptavidin by simple mixing. The streptavidin-binding capacity of BacMPs biotinylated in vivo was 35-fold greater than that of BacMPs biotinylated in vitro, where BAP-displaying BacMPs purified from bacterial cells were biotinylated by being mixed with E. coli biotin ligase. This study describes not only a simple method to produce biotinylated nanomagnetic particles but also a possible expansion of in vivo biotinylation technology for bacterial investigation.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 513-521
Author(s):  
Nancy J Trun ◽  
Thomas J Silhavy

ABSTRACT The prlC gene of E. coli was originally identified as an allele, prlC1, which suppresses certain signal sequence mutations in the genes for several exported proteins. We have isolated six new alleles of prlC that also confer this phenotype. These mutations can be placed into three classes based on the degree to which they suppress the lamBsignal sequence deletion, lamBs78. Genetic mapping reveals that the physical location of the mutations in prlC correlates with the strength of the suppression, suggesting that different regions of the gene can be altered to yield a suppressor phenotype. We also describe an in vivo cloning procedure using λplacMu9H. The procedure relies on transposition and illegitimate recombination to generate a specialized transducing phage that carries prlC1. This method should be applicable to any gene for which there is a mutant phenotype.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Amit Gaurav ◽  
Varsha Gupta ◽  
Sandeep K. Shrivastava ◽  
Ranjana Pathania

AbstractThe increasing prevalence of antimicrobial resistance has become a global health problem. Acinetobacter baumannii is an important nosocomial pathogen due to its capacity to persist in the hospital environment. It has a high mortality rate and few treatment options. Antibiotic combinations can help to fight multi-drug resistant (MDR) bacterial infections, but they are rarely used in the clinics and mostly unexplored. The interaction between bacteriostatic and bactericidal antibiotics are mostly reported as antagonism based on the results obtained in the susceptible model laboratory strain Escherichia coli. However, in the present study, we report a synergistic interaction between nalidixic acid and tetracycline against clinical multi-drug resistant A. baumannii and E. coli. Here we provide mechanistic insight into this dichotomy. The synergistic combination was studied by checkerboard assay and time-kill curve analysis. We also elucidate the mechanism behind this synergy using several techniques such as fluorescence spectroscopy, flow cytometry, fluorescence microscopy, morphometric analysis, and real-time polymerase chain reaction. Nalidixic acid and tetracycline combination displayed synergy against most of the MDR clinical isolates of A. baumannii and E. coli but not against susceptible isolates. Finally, we demonstrate that this combination is also effective in vivo in an A. baumannii/Caenorhabditis elegans infection model (p < 0.001)


1987 ◽  
Vol 248 (1) ◽  
pp. 43-51 ◽  
Author(s):  
J Charlier ◽  
R Sanchez

In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5′)tetraphospho(5′)adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.


Sign in / Sign up

Export Citation Format

Share Document