Double Cross-Linked Chitosan Composite Films Developed with Oxidized Tannic Acid and Ferric Ions Exhibit High Strength and Excellent Water Resistance

2019 ◽  
Vol 20 (2) ◽  
pp. 801-812 ◽  
Author(s):  
Jie Yang ◽  
Man Li ◽  
Yanfei Wang ◽  
Hao Wu ◽  
Tianyuan Zhen ◽  
...  
Cellulose ◽  
2021 ◽  
Author(s):  
Huiwen Pang ◽  
Yuyang Wang ◽  
Zhiwei Chang ◽  
Changlei Xia ◽  
Chunrui Han ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 421
Author(s):  
Binwei Zheng ◽  
Weiwei Zhang ◽  
Litao Guan ◽  
Jin Gu ◽  
Dengyun Tu ◽  
...  

A high strength recycled newspaper (NP)/high density polyethylene (HDPE) laminated composite was developed using NP laminas as reinforcement and HDPE film as matrix. Herein, NP fiber was modified with stearic acid (SA) to enhance the water resistance of the NP laminas and NP/HDPE composite. The effects of heat treatment and SA concentration on the water resistance and tensile property of NP and composite samples were investigated. The chemical structure of the NP was characterized with X-ray diffractometer, X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectra techniques. The surface and microstructure of the NP sheets were observed by scanning electron microscopy. An expected high-water resistance of NP sheets was achieved due to a chemical bonding that low surface energy SA were grafted onto the modified NP fibers. Results showed that the hydrophobicity of NP increased with increasing the stearic acid concentration. The water resistance of the composite laminates was depended on the hydrophobicity of the NP sheets. The lowest value of 2 h water absorption rate (3.3% ± 0.3%) and thickness swelling rate (2.2% ± 0.4%) of composite were obtained when the SA concentration was 0.15 M. In addition, the introduction of SA can not only enhance the water resistance of the composite laminates, but also reduce the loss of tensile strength in wet conditions, which shows potential in outdoor applications.


2014 ◽  
Vol 46 (7) ◽  
pp. 422-429 ◽  
Author(s):  
Madathil Sunilkumar ◽  
Ambalakkandy Abdul Gafoor ◽  
Abdulaziz Anas ◽  
Areepuravan Parakkal Haseena ◽  
Athiyanathil Sujith

2014 ◽  
Vol 36 (12) ◽  
pp. 2303-2308 ◽  
Author(s):  
Hengxue Xiang ◽  
Lili Li ◽  
Shichao Wang ◽  
Renlin Wang ◽  
Yanhua Cheng ◽  
...  

2021 ◽  
Vol 170 ◽  
pp. 113747
Author(s):  
Hongmei Yuan ◽  
Jianfei Wu ◽  
Dong Wang ◽  
Liulian Huang ◽  
Lihui Chen ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1258 ◽  
Author(s):  
Xiaohu Qiang ◽  
Songyi Zhou ◽  
Zhuo Zhang ◽  
Qiling Quan ◽  
Dajian Huang

Fish gelatin (FG)/glycerol (GE)/halloysite (HT) composite films were prepared by casting method. The morphology of the composite films was observed by scanning electron microscopy (SEM). The effects of HT and GE addition on the mechanical properties, water resistance and optical properties of the composites were investigated. Results showed that with increasing GE content, the elongation at composite breaks increased significantly, but their tensile strength (TS) and water resistance decreased. SEM results showed that GE can partly promote HT dispersion in composites. TS and water resistance also increased with the addition of HTs. Well-dispersed HTs in the FG matrix decreased the moisture uptake and water solubility of the composites. All films showed a transparency higher than 80% across the visible light region (400–800 nm), thereby indicating that light transmittance of the resulting nanocomposites was slightly affected by GE and HTs.


2015 ◽  
Vol 804 ◽  
pp. 179-182 ◽  
Author(s):  
Piyapong Pankaew ◽  
Pattarinee Klumdoung ◽  
Kittisakchai Naemchanthara

Silk sericin/chitosan composite films were successfully prepared for possible future wound dressing applications. To prepare the chitosan, shrimp shells were first washed and finely ground to obtain a fine powder before extracting the chitosan using a chemical reaction method. The sericin was extracted from Thai raw cocoons of Bombyx mori silk worm via boiling and drying. To prepare the silk sericin/chitosan composite films, the silk sericin and chitosan solutions with varying volume ratios were mixed in a magnetic stirrer for 30 minutes. They were then dropped on to a plastic mold. The sample was dried at a temperature of 50 °C. The prepared composite films were characterized using UV-VIS spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The results from our studies could provide a method for future composite film development.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1143 ◽  
Author(s):  
Li Xu ◽  
Ying Li ◽  
Shiyu Gao ◽  
Yue Niu ◽  
Huaxuan Liu ◽  
...  

Blue luminescent carbon quantum dots (CQDs) were prepared from cyanobacteria by a hydrothermal method. The PL quantum yields of the obtained CQDs was 5.30%. Cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite films were prepared, which could emit bright blue under UV light. FTIR characterization showed that the composite films had hydroxyl groups on the surface and no new groups were formed after combining the three materials. The photoluminescence (PL) spectra revealed that the emission of the prepared CQDs was excitation dependent. Studies on the water resistance performance and light barrier properties of the composite films showed that they possessed higher water resistance properties and better UV/infrared light barrier properties. Therefore, we report the cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite films have the potential to be applied in flexible packaging materials, anti-fake materials, UV/infrared light barrier materials and so on.


Sign in / Sign up

Export Citation Format

Share Document