Natural polyphenol tannic acid reinforced poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) composite films with enhanced tensile strength and fracture toughness

2014 ◽  
Vol 36 (12) ◽  
pp. 2303-2308 ◽  
Author(s):  
Hengxue Xiang ◽  
Lili Li ◽  
Shichao Wang ◽  
Renlin Wang ◽  
Yanhua Cheng ◽  
...  
Alloy Digest ◽  
1978 ◽  
Vol 27 (9) ◽  

Abstract UNIFLUX 70 is a continuous flux-cored welding electrode (wire) for welding in carbon dioxide shielding gas in the flat groove and horizontal fillet positions. It is used widely in shipbuilding and other fabricating industries to weld carbon steel and provides around 82,000 psi tensile strength and around 50 foot-pounds Charpy V-notch impact at 0 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: CS-74. Producer or source: Unicore Inc., United Nuclear Corporation.


Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Kaiser Aluminum Alloy 7050 has very high mechanical properties including tensile strength, high fracture toughness, and a high resistance to exfoliation and stress-corrosion cracking. The alloy is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: AL-366. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1993 ◽  
Vol 42 (2) ◽  

Abstract LESCALLOY 300M VAC ARC is a low-alloy steel with an excellent combination of high hardenability and high strength coupled with good ductility and good toughness. Its tensile strength ranges from 280,000 to 300,000 psi. It is produced by the vacuum consumable electrode melting process to provide optimum cleanliness and preferred ingot structure. Its applications include aircraft components, pressure vessels and fasteners. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: SA-321. Producer or source: Latrobe Steel Company. Originally published March 1976, revised February 1993.


Alloy Digest ◽  
1978 ◽  
Vol 27 (5) ◽  

Abstract CORONA 5 is a titanium alloy developed for applications in fracture-controlled aircraft components. Plane strain fracture toughnesses of 110,000 to 150,000 psi sq.rt. in. (120 to 165 MPa sq.rt. m) have been produced in this alloy at 135,00 psi (930 MPa) tensile strength through a variety of different process histories. The specific strength (strength/density ratio) is superior to that of the Ti-6A1-4V alloy. Resistance to fatigue crack propagation and resistance to chloride-stress-corrosion cracking are comparable to those of Ti-6A1-4V. This datasheet provides information on composition, physical properties, microstructure, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-70. Producer or source: Crucible Steel Company of America, Titanium Division.


Alloy Digest ◽  
1998 ◽  
Vol 47 (5) ◽  

Abstract Inland DuraSpring is a high-strength microalloyed spring steel for use in high stress coil springs for automobile and light truck suspension systems. This bar product offers significant improvements in tensile strength, fatigue properties, and fracture toughness compared to conventional spring steels. This datasheet provides information on composition, hardness, and tensile properties as well asfracture toughness and fatigue. Filing Code: SA-496. Producer or source: Ispat Inland Inc.


Alloy Digest ◽  
1997 ◽  
Vol 46 (10) ◽  

Abstract Vasco 9-4-20 (0.20 wt% C) is a premium quality aircraft steel that combines high tensile strength with good fracture toughness. It is a heat-treatable alloy capable of developing an ultimate tensile strength greater than 190 ksi. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: SA-489. Producer or source: Vasco, An Allegheny Teledyne Company.


Alloy Digest ◽  
1990 ◽  
Vol 39 (12) ◽  

Abstract VASCOMAX T-300 is an 18% nickel maraging steel in which titanium is the primary strengthening agent. It develops a tensile strength of about 300,000 psi with simple heat treatment. The alloy is produced by Vacuum Induction Melting/Vacuum Arc Remelting. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SA-454. Producer or source: Teledyne Vasco.


Alloy Digest ◽  
1962 ◽  
Vol 11 (5) ◽  

Abstract Crucible D6 is a low alloy ultra-high strength steel developed for aircraft-missile applications and primarily designed for use in the 260,000-290,000 psi tensile strength range. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on low temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SA-129. Producer or source: Crucible Steel Company of America.


2011 ◽  
Vol 695 ◽  
pp. 170-173 ◽  
Author(s):  
Voravadee Suchaiya ◽  
Duangdao Aht-Ong

This work focused on the preparation of the biocomposite films of polylactic acid (PLA) reinforced with microcrystalline cellulose (MCC) prepared from agricultural waste, banana stem fiber, and commercial microcrystalline cellulose, Avicel PH 101. Banana stem microcrystalline cellulose (BS MCC) was prepared by three steps, delignification, bleaching, and acid hydrolysis. PLA and two types of MCC were processed using twin screw extruder and fabricated into film by a compression molding. The mechanical and crystalline behaviors of the biocomopsite films were investigated as a function of type and amount of MCC. The tensile strength and Young’s modulus of PLA composites were increased when concentration of MCC increased. Particularly, banana stem (BS MCC) can enhance tensile strength and Young’s modulus of PLA composites than the commercial MCC (Avicel PH 101) because BS MCC had better dispersion in PLA matrix than Avicel PH 101. This result was confirmed by SEM image of fractured surface of PLA composites. In addition, XRD patterns of BS MCC/PLA composites exhibited higher crystalline peak than that of Avicel PH 101/PLA composites


Sign in / Sign up

Export Citation Format

Share Document