Characterization of Organic Nitrogen Compounds and Their Impact on the Stability of Marginally Stable Diesel Fuels

2019 ◽  
Vol 33 (7) ◽  
pp. 6659-6669 ◽  
Author(s):  
Rachel D. Deese ◽  
Robert E. Morris ◽  
Alison E. Metz ◽  
Kristina M. Myers ◽  
Kevin Johnson ◽  
...  
2014 ◽  
Vol 32 (6) ◽  
pp. 638-645 ◽  
Author(s):  
J. W. Bauserman ◽  
G. W. Mushrush ◽  
D. R. Hardy ◽  
H. D. Willauer ◽  
M. Laskoski ◽  
...  

2011 ◽  
Vol 46 (2) ◽  
pp. 176-180 ◽  
Author(s):  
George W. Mushrush ◽  
Marian A. Quintana ◽  
Joy W. Bauserman ◽  
Heather D. Willauer

Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


2020 ◽  
Vol 21 (8) ◽  
pp. 741-747
Author(s):  
Liguang Zhang ◽  
Yanan Shen ◽  
Wenjing Lu ◽  
Lengqiu Guo ◽  
Min Xiang ◽  
...  

Background: Although the stability of proteins is of significance to maintain protein function for therapeutical applications, this remains a challenge. Herein, a general method of preserving protein stability and function was developed using gelatin films. Method: Enzymes immobilized onto films composed of gelatin and Ethylene Glycol (EG) were developed to study their ability to stabilize proteins. As a model functional protein, β-glucosidase was selected. The tensile properties, microstructure, and crystallization behavior of the gelatin films were assessed. Result: Our results indicated that film configurations can preserve the activity of β-glucosidase under rigorous conditions (75% relative humidity and 37°C for 47 days). In both control films and films containing 1.8 % β-glucosidase, tensile strength increased with increased EG content, whilst the elongation at break increased initially, then decreased over time. The presence of β-glucosidase had a negligible influence on tensile strength and elongation at break. Scanning electron-microscopy (SEM) revealed that with increasing EG content or decreasing enzyme concentrations, a denser microstructure was observed. Conclusion: In conclusion, the dry film is a promising candidate to maintain protein stabilization and handling. The configuration is convenient and cheap, and thus applicable to protein storage and transportation processes in the future.


1989 ◽  
Vol 35 (10) ◽  
pp. 972-974 ◽  
Author(s):  
Alain Lamarre ◽  
Pierre J. Talbot

The stability of human coronavirus 229E infectivity was maximum at pH 6.0 when incubated at either 4 or 33 °C. However, the influence of pH was more pronounced at 33 °C. Viral infectivity was completely lost after a 14-day incubation period at 22, 33, or 37 °C but remained relatively constant at 4 °C for the same length of time. Finally, the infectious titer did not show any significant reduction when subjected to 25 cycles of thawing and freezing. These studies will contribute to optimize virus growth and storage conditions, which will facilitate the molecular characterization of this important pathogen.Key words: coronavirus, pH, temperature, infectivity, human coronavirus.


Sign in / Sign up

Export Citation Format

Share Document