Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis

2017 ◽  
Vol 51 (7) ◽  
pp. 4069-4080 ◽  
Author(s):  
Gang Luo ◽  
Bing Li ◽  
Li-Guan Li ◽  
Tong Zhang ◽  
Irini Angelidaki
2021 ◽  
Vol 13 (20) ◽  
pp. 11131
Author(s):  
Osama S. Ali ◽  
Walaa G. Hozayen ◽  
Abdulwahab S. Almutairi ◽  
Sherif A. Edris ◽  
Aala A. Abulfaraj ◽  
...  

Wastewater treatment plants (WWTPs) are recognized as hotspots for the dissemination of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in the environment. Our study utilized a high-throughput sequencing-based metagenomic analysis approach to compare the ARG abundance profiles of the raw sewage, treated effluent and activated sludge samples from a full-scale WWTP in Egypt. In addition, the difference in microbial community composition due to the treatment process was assessed. As a result, 578 ARG subtypes (resistance genes) belonging to 18 ARG types (antibiotic resistance classes) were identified. ARGs encoding for resistance against multidrug, aminoglycoside, bacitracin, beta-lactam, sulfonamide, and tetracycline antibiotics were the most abundant types. The total removal efficiency percentage of ARGs in the WWTP was found to be 98% however, the ARG persistence results indicated that around 68% of the ARGs in the influent could be found in the treated effluent. This finding suggests that the treated wastewater poses a potential risk for the ARG dissemination in bacterial communities of the receiving water bodies via horizontal gene transfer (HGT). The community composition at phylum level showed that Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria were the most abundant phyla in all datasets. Although the relative abundance of several pathogenic bacteria in the influent declined to less than 1% in the effluent, the taxonomic assignments at species level for the effluent and sludge metagenomes demonstrated that clinically important pathogens such as Escherichia coli, Klebsiella pneumonia, and Aeromonas caviae were present. Overall, the results of this study would hopefully enhance our knowledge about the abundance profiles of ARGs and their fate in different wastewater treatment compartments that have never been examined before.


Author(s):  
Pâmela B. Vilela ◽  
Rondon P. Mendonça Neto ◽  
Maria Clara V.M. Starling ◽  
Alessandra da S. Martins ◽  
Giovanna F.F. Pires ◽  
...  

2021 ◽  
Vol 323 ◽  
pp. 124574
Author(s):  
Okugbe Ebiotubo Ohore ◽  
Songhe Zhang ◽  
Shaozhuang Guo ◽  
Felix Gyawu Addo ◽  
Benjamin Manirakiza ◽  
...  

Author(s):  
N.A. Sabri ◽  
H. Schmitt ◽  
B.M. van der Zaan ◽  
H.W. Gerritsen ◽  
H.H.M. Rijnaarts ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 502
Author(s):  
Andrea Visca ◽  
Anna Barra Caracciolo ◽  
Paola Grenni ◽  
Luisa Patrolecco ◽  
Jasmin Rauseo ◽  
...  

Anaerobic digestion is one of the best ways to re-use animal manure and agricultural residues, through the production of combustible biogas and digestate. However, the use of antibiotics for preventing and treating animal diseases and, consequently, their residual concentrations in manure, could introduce them into anaerobic digesters. If the digestate is applied as a soil fertilizer, antibiotic residues and/or their corresponding antibiotic resistance genes (ARGs) could reach soil ecosystems. This work investigated three common soil emerging contaminants, i.e., sulfamethoxazole (SMX), ciprofloxacin (CIP), enrofloxacin (ENR), their ARGs sul1, sul2, qnrS, qepA, aac-(6′)-Ib-cr and the mobile genetic element intI1, for one year in a full scale anaerobic plant. Six samplings were performed in line with the 45-day hydraulic retention time (HRT) of the anaerobic plant, by collecting input and output samples. The overall results show both antibiotics and ARGs decreased during the anaerobic digestion process. In particular, SMX was degraded by up to 100%, ENR up to 84% and CIP up to 92%, depending on the sampling time. In a similar way, all ARGs declined significantly (up to 80%) in the digestate samples. This work shows how anaerobic digestion can be a promising practice for lowering antibiotic residues and ARGs in soil.


Sign in / Sign up

Export Citation Format

Share Document