Synthesis of a Novel P/N/S-Containing Flame Retardant and Its Application in Epoxy Resin: Thermal Property, Flame Retardance, and Pyrolysis Behavior

2016 ◽  
Vol 55 (44) ◽  
pp. 11520-11527 ◽  
Author(s):  
Rongkun Jian ◽  
Pan Wang ◽  
Weisen Duan ◽  
Junsheng Wang ◽  
Xuelin Zheng ◽  
...  
RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20391-20402
Author(s):  
Chen Cheng ◽  
Yanling Lu ◽  
Weining Ma ◽  
Shaojie Li ◽  
Jun Yan ◽  
...  

Red phosphorus was coated by a polydopamine/melamine composite shell structure, which constituted an intumescent flame retardant with superior flame retardance and smoke suppression performance for epoxy resin.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 245
Author(s):  
Yong Sun ◽  
Yongli Peng ◽  
Yajiao Zhang

In this work, a flame retardant curing agent (DOPO-MAC) composed of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide DOPO and methyl acrylamide (MAC) was synthesized successfully, and the structure of the compound was characterized by FT-IR and 1H-NMR. The non-isothermal kinetics of the epoxy resin/DOPO-MAC system with 1% phosphorus was studied by non-isothermal DSC method. The activation energy of the reaction (Ea), about 46 kJ/mol, was calculated by Kissinger and Ozawa method, indicating that the curing reaction was easy to carry out. The flame retardancy of the epoxy resin system was analyzed by vertical combustion test (UL94) and limiting oxygen index (LOI) test. The results showed that epoxy resin (EP) with 1% phosphorus successfully passed a UL-94 V-0 rating, and the LOI value increased along with the increasing of phosphorus content. It confirmed that DOPO-MAC possessed excellent flame retardance and higher curing reactivity. Moreover, the thermal stability of EP materials was also investigated by TGA. With the DOPO-MAC added, the residual mass of EP materials increased remarkably although the initial decomposition temperature decreased slightly.


2011 ◽  
Vol 197-198 ◽  
pp. 1167-1170
Author(s):  
Zhi Ping Wu ◽  
Yun Chu Hu ◽  
Mei Qin Chen

The effect of intumescent flame retardant (IFR) contained microencapsulated red phosphorus on the flame retardance of E-44 epoxy resin (EP) was studied. The test results indicated that good flame retardancy can be realized when epoxy resin treated with 30% IFR. Thermogravimetric analysis showed that the charring amount at high temperature of EP can increase substantially when IFR was incorporated. In order to further explain this phenomenon, Dolye integration method of thermal degradation dynamics was employed to study the thermal degradation process of EP treated with IFR based on the microencapsulated red phosphrous according to the thermal gravimetry analysis results.The activation energy and reactor order of different thermal degradation stages were obtained. The results of thermal degradation dynamics implied the intumescent flame retardants can improve the flame retardance of the epoxy resin through decrease the degradation speed and increase the activation energy of the second thermal degradation stage.


2016 ◽  
Vol 7 (17) ◽  
pp. 3003-3012 ◽  
Author(s):  
Yi Tan ◽  
Zhu-Bao Shao ◽  
Lei-Xiao Yu ◽  
Jia-Wei Long ◽  
Min Qi ◽  
...  

PAz-APP (as a monocomponent hardener) can bring excellent flame retardance and smoke suppression efficiency to the EP system without sacrificing the mechanical properties and glass transition temperature.


Sign in / Sign up

Export Citation Format

Share Document