scholarly journals A Study on the Synthesis, Curing Behavior and Flame Retardance of a Novel Flame Retardant Curing Agent for Epoxy Resin

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 245
Author(s):  
Yong Sun ◽  
Yongli Peng ◽  
Yajiao Zhang

In this work, a flame retardant curing agent (DOPO-MAC) composed of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide DOPO and methyl acrylamide (MAC) was synthesized successfully, and the structure of the compound was characterized by FT-IR and 1H-NMR. The non-isothermal kinetics of the epoxy resin/DOPO-MAC system with 1% phosphorus was studied by non-isothermal DSC method. The activation energy of the reaction (Ea), about 46 kJ/mol, was calculated by Kissinger and Ozawa method, indicating that the curing reaction was easy to carry out. The flame retardancy of the epoxy resin system was analyzed by vertical combustion test (UL94) and limiting oxygen index (LOI) test. The results showed that epoxy resin (EP) with 1% phosphorus successfully passed a UL-94 V-0 rating, and the LOI value increased along with the increasing of phosphorus content. It confirmed that DOPO-MAC possessed excellent flame retardance and higher curing reactivity. Moreover, the thermal stability of EP materials was also investigated by TGA. With the DOPO-MAC added, the residual mass of EP materials increased remarkably although the initial decomposition temperature decreased slightly.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2205
Author(s):  
Qian Li ◽  
Yujie Li ◽  
Yifan Chen ◽  
Qiang Wu ◽  
Siqun Wang

A novel liquid phosphorous-containing flame retardant anhydride (LPFA) with low viscosity was synthesized from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and methyl tetrahydrophthalic anhydride (MeTHPA) and further cured with bisphenol-A epoxy resin E-51 for the preparation of the flame retardant epoxy resins. Both Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS) and nuclear magnetic resonance (NMR) measurements revealed the successful incorporation of DOPO on the molecular chains of MeTHPA through chemical reaction. The oxygen index analysis showed that the LPFA-cured epoxy resin exhibited excellent flame retardant performance, and the corresponding limiting oxygen index (LOI) value could reach 31.2%. The UL-94V-0 rating was achieved for the flame retardant epoxy resin with the phosphorus content of 2.7%. With the addition of LPFA, the impact strength of the cured epoxy resins remained almost unchanged, but the flexural strength gradually increased. Meanwhile, all the epoxy resins showed good thermal stability. The glass transition temperature (Tg) and thermal decomposition temperature (Td) of epoxy resin cured by LPFA decreased slightly compared with that of MeTHPA-cured epoxy resin. Based on such excellent flame retardancy, low viscosity at room temperature and ease of use, LPFA showed potential as an appropriate curing agent in the field of electrical insulation materials.


2012 ◽  
Vol 466-467 ◽  
pp. 495-499 ◽  
Author(s):  
Ming Gao ◽  
Ying Juan Sun

A novel cheap macromolecular intumescent flame retardants (Zn-MIFR), was synthesized, and its structure was a caged bicyclic macromolecule containing phosphorus-silicon characterized by IR. Epoxy resins (EP) were modified with Zn-MIFR to get the flame retardant EP, whose flammability and burning behavior were characterized by UL 94, limiting oxygen index (LOI), dilatation, char yield, smoke density rating (SDR) and maximum smoke density (MSD). The epoxy resins were obtained for the UL 94 V-0 rating at low Zn contents of 3.0 % get a LOI of 27.5% and char yield of 20.5%. Dilatation, SDR and MSD of EP/Zn-MIFR decreased. The degradation behavior of the EP/Zn-MIFR was studied by TG and EDX analysis. The experimental results exhibited that the initial decomposition temperature (IDT) was decreased, integral procedure decomposition temperature (IPDT) and amounts of Zn and P at the residue were increased.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3230
Author(s):  
Melissa K. Stanfield ◽  
Jeronimo Carrascal ◽  
Luke C. Henderson ◽  
Daniel J. Eyckens

This work demonstrates the introduction of various α-aminophosphonate compounds to an epoxy resin system, thereby improving flame retardance properties. The α-aminophosphonate scaffold allows for covalent incorporation (via the secondary amine) of the compounds into the polymer network. This work explores the synergistic effect of phosphorus and halogens (such as fluorine) to improve flame retardancy. The compounds were all prepared and isolated in analytical purity and in good yield (95%). Epoxy samples were prepared, individually incorporating each compound. Thermogravimetric analysis showed an increased char yield, indicating an improved thermal resistance (with respect to the control sample). Limiting oxygen index for the control polymer was 28.0% ± 0.31% and it increased to 34.6% ± 0.33% for the fluorinated derivative.


2019 ◽  
Vol 953 ◽  
pp. 179-184
Author(s):  
Yong Li Peng ◽  
Can Zhang ◽  
Ni An Zhuo

Using 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10 oxide (DOPO) and N-methylol acrylamide as the main raw materials, the curing agent DOPO-NMA was synthesized. The flame retardant curing agent DOPO-NMA and E-51 epoxy resin (EP) were then cured to obtain epoxy resin E-51 system, and its flame retardancy, thermal stability and mechanical properties were studied. The results showed that the tensile, bending and impact strength of the cured system decreased with the increase of phosphorus mass fraction in the resin system, and the flame retardancy rating, limiting oxygen index (LOI) and char yield at 700°C increased with the increase of phosphorus mass fraction in the resin system.


2012 ◽  
Vol 560-561 ◽  
pp. 563-568 ◽  
Author(s):  
Ming Gao ◽  
Ying Juan Sun

A novel cheap macromolecular intumescent flame retardants (Si-MIFR), was synthesized, and its structure was a caged bicyclic macromolecule containing phosphorus-silicon characterized by IR. Epoxy resins (EP) were modified with Si-MIFR to get the flame retardant EP, whose flammability and burning behavior were characterized by UL 94, limiting oxygen index (LOI), dilatation, char yield, smoke density rating (SDR) and maximum smoke density (MSD). The epoxy resins were obtained for the UL 94 V-0 rating at low Si contents of 3.0 % get a LOI of 27.5% and char yield of 23.8%. Dilatation, SDR and MSD of EP/Si-MIFR decreased. The degradation behavior of the EP/Si-MIFR was studied by TG and EDX analysis. The experimental results exhibited that the initial decomposition temperature (IDT) was decreased, integral procedure decomposition temperature (IPDT) and amounts of Si and P at the residue were increased.


2021 ◽  
pp. 095400832199241
Author(s):  
Zijin Luo ◽  
Zhe Chen ◽  
Jun Wei ◽  
Dongchao Wang ◽  
Han Chen ◽  
...  

A novel intumescent flame retardant, PPMD, was designed from phosphaphenanthrene and nitrogen heterocycles through the two-step gut reactions of 1,4-phthalaldehyde and 3-methyl-1-phe-nylpyrazol-5-ylamine. After determination of its structure by nuclear magnetic resonance and Fourier-transform infrared analyses, PPMD was added to an epoxy resin (EP) to facilitate a curing process. Thus, EP/PPMD samples with excellent transparency and flame retardancy were acquired. For example, the EP sample satisfied the UL-94 V-0 standard and achieved a limiting oxygen index value of 30.5% because of the incorporation of 5 wt% PPMD. The cone calorimeter test of the EP/5% PPMD sample revealed that its total smoke production (TSP) and total heat release (THR) values of EP/5% PPMD was only 22.5% and 56.4% of the control group, respectively. Moreover, the average effective heat of combustion (av-EHC) value of EP/5% PPMD was reduced by 34.1%, indicating that PPMD possessed high flame-inhibition activity and smoke suppression efficiency. The flame-retardant mechanisms of PPMD were also investigated in gas phase by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and in condensed phase by XPS and IR.


2017 ◽  
Vol 30 (3) ◽  
pp. 318-327 ◽  
Author(s):  
Mengjiao Wang ◽  
Shijiang Fang ◽  
Heng Zhang

In this article, inherent flame-retardant epoxy ether, 9,10-dihydro-9-oxa-10-[1,1-bis(4-glycidyloxyphenyl)ethyl]-10-phosphaphenanthrene 10-oxide (DPBAEP), with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide moieties was synthesized via an economical method and was used to improve the flame retardancy of 4,4′-tetradiglycidyl diaminodiphenyl methane (TGDDM). A series of epoxy resins were prepared and cured with 4,4′-diaminodiphenyl sulfone. The glass transition temperatures ( Tg) of resin composites were above 243°C and decreased only slightly after DPBAEP was added. The thermal stabilities under the nitrogen (N2) and air atmosphere were also measured using thermogravimetric analysis. The results indicated that DPBAEP had a high decomposition temperature and affected the thermal degradation and promoted the charring of resins. When only over 5 wt% of DPBAEP was introduced, the thermosets obtained a high limiting oxygen index value of around 33.0%, achieved vertical burning V-0 rating and presented fast-swelling char barriers. In order to better understand the flame-retardant mechanisms, the residual char was investigated by scanning electron microscopy observation and Fourier transform infrared spectra. We inferred that the phosphorus (P) moieties reacted with the resin matrix, which played a significant role in promoting the formation of char with special structure, as well as making it rich and tough enough. This kind of char barrier could protect the underlying resin matrix against oxygen and heat transfer and inhibited volatile combustible from diffusing to the flame. Hence, thanks to the synergistic effect of P–N and the excellent compatibility, DPBAEP could impart excellent flame retardancy to TGDDM epoxy resin.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3648
Author(s):  
Jiawei Jiang ◽  
Siqi Huo ◽  
Yi Zheng ◽  
Chengyun Yang ◽  
Hongqiang Yan ◽  
...  

Hexaphenoxycyclotriphosphazene (HPCP) is a common flame retardant for epoxy resin (EP). To improve the thermostability and fire safety of HPCP-containing EP, we combined UiO66-NH2 (a kind of metal-organic frame, MOF) with halloysite nanotubes (HNTs) by hydrothermal reaction to create a novel synergistic flame retardant (H-U) of HPCP for EP. For the EP containing HPCP and H-U, the initial decomposition temperature (T5%) and the temperature of maximum decomposition rate (Tmax) increased by 11 and 17 °C under nitrogen atmosphere compared with those of the EP containing only HPCP. Meanwhile, the EP containing HPCP and H-U exhibited better tensile and flexural properties due to the addition of rigid nanoparticles. Notably, the EP containing HPCP and H-U reached a V-0 rating in UL-94 test and a limited oxygen index (LOI) of 35.2%. However, with the introduction of H-U, the flame retardant performances of EP composites were weakened in the cone calorimeter test, which was probably due to the decreased height of intumescent residual char.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jiaqian Li ◽  
Yaru Yang ◽  
Yunchao Xiao ◽  
Bolin Tang ◽  
Yaming Ji ◽  
...  

To improve the flame retardant properties of polyethylene terephthalate (PET), glucose-derived carbon nanospheres (CNSs) were synthesized and introduced into PET matrix. The thermal property and flame retardancy of CNSs/PET composites were thoroughly investigated. Results showed that CNSs displayed good flame-retardant performance for PET. When blended with only 1.0 wt.% of CNSs, CNSs/PET exhibited a limiting oxygen index (LOI) of 26.3 and a vertical combustion class of V-2, and its peak-heat release rate (pk-HRR) was reduced by 41.6%. Importantly, the initial decomposition temperature and the maximum weight loss temperature of CNSs/PET were 52°C and 199°C higher than those of PET, respectively. Furthermore, a condensed phase flame-retardant mechanism appeared in CNSs/PET, which formed a dense and thermally stable protective char layer during combustion. Overall, this study disclosed the flame-retardant potential and possible mechanism of CNSs for polyesters, which would benefit the development of carbon-based materials and flame-retardant polymers.


Sign in / Sign up

Export Citation Format

Share Document