Synergistic Toughening Effect of Olefin Block Copolymer and Highly Effective β-Nucleating Agent on the Low-Temperature Toughness of Polypropylene Random Copolymer

2017 ◽  
Vol 56 (18) ◽  
pp. 5277-5283 ◽  
Author(s):  
Qilin Ren ◽  
Qinglong Zhang ◽  
Li Wang ◽  
Jianjun Yi ◽  
Jiachun Feng
2016 ◽  
Vol 107 ◽  
pp. 295-301 ◽  
Author(s):  
Qilin Ren ◽  
Jiashu Fan ◽  
Qinglong Zhang ◽  
Jianjun Yi ◽  
Jiachun Feng

2017 ◽  
Vol 37 (7) ◽  
pp. 715-727 ◽  
Author(s):  
Yingchun Li ◽  
Shuai He ◽  
Hui He ◽  
Peng Yu ◽  
Dongqing Wang

Abstract This research designed a series of novel approaches aiming to tackle a long-standing problem that is the brittleness of polypropylene (PP) random copolymer (PPR) at low temperature. By introducing polyolefin elastomer (POE), the toughness of PPR was improved; talc improved the stiffness of PPR, low density polyethylene (LDPE) or high density PE (HDPE) improved the low temperature toughness of PPR, and annealing treatment also improved the low temperature toughness of PPR significantly. The addition of dicumyl peroxide (DCP) and triallyl isocyanurate (TAIC) increased its stiffness through the formation of cross-linking networks. Also, the crystallization behavior and morphology were investigated in detail. Differential scanning calorimetry (DSC) results indicated that the adoption of annealing treatment can improve the crystallinity of PPR, while a polarizing microscope revealed that the incorporation of foreign matter can facilitate the crystallization process of the matrix. X-ray diffraction (XRD) tests showed an unchanged polymorphic composition of PPR after introducing different additives, and scanning electron microscopy (SEM) indicated that annealing treatment can enhance interfacial interactions between the matrix and fillers.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2957
Author(s):  
Amina Benarab ◽  
Enrique Blázquez-Blázquez ◽  
Rachida Krache ◽  
Rosario Benavente ◽  
María L. Cerrada ◽  
...  

Several composites were prepared based on a polypropylene random copolymer (PPR) and different amounts of date stone flour (DSF). This cellulosic fiber was silanized beforehand in order to reduce its hydrophilicity and improve the interfacial adhesion with the polymer. Other composites were also obtained, including a sorbitol derivative as an effective nucleant. Films made from these composites were prepared using two different thermal treatments, involving slow crystallization and rapid cooling from the melt. Scanning electron microscopy was used to evaluate the morphological features and the DSF particle dispersion within the PPR matrix. X-ray diffraction experiments and differential scanning calorimetry tests were employed to assess the crystalline characteristics and for the phase transitions, paying especial attention to the effects of the DSF and nucleating agent on PPR crystallization. An important nucleation ability was found for DSF, and evidently for the sorbitol derivative. The peak crystallization temperature upon cooling was considerably increased by the incorporation of either the nucleant or DSF. Additionally, a much higher proportion of orthorhombic crystals developed in relation to the monoclinic ones. Moreover, the mechanical responses were estimated from the microhardness experiments and significant improvements were found with increasing DSF contents. All of these findings indicate that the use of silanized DSF is a fairly good approach for the preparation of polymeric eco-composites, taking advantage of the widespread availability of this lignocellulosic material, which is otherwise wasted.


Sign in / Sign up

Export Citation Format

Share Document