scholarly journals Composites of a Polypropylene Random Copolymer and Date Stone Flour: Crystalline Details and Mechanical Response

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2957
Author(s):  
Amina Benarab ◽  
Enrique Blázquez-Blázquez ◽  
Rachida Krache ◽  
Rosario Benavente ◽  
María L. Cerrada ◽  
...  

Several composites were prepared based on a polypropylene random copolymer (PPR) and different amounts of date stone flour (DSF). This cellulosic fiber was silanized beforehand in order to reduce its hydrophilicity and improve the interfacial adhesion with the polymer. Other composites were also obtained, including a sorbitol derivative as an effective nucleant. Films made from these composites were prepared using two different thermal treatments, involving slow crystallization and rapid cooling from the melt. Scanning electron microscopy was used to evaluate the morphological features and the DSF particle dispersion within the PPR matrix. X-ray diffraction experiments and differential scanning calorimetry tests were employed to assess the crystalline characteristics and for the phase transitions, paying especial attention to the effects of the DSF and nucleating agent on PPR crystallization. An important nucleation ability was found for DSF, and evidently for the sorbitol derivative. The peak crystallization temperature upon cooling was considerably increased by the incorporation of either the nucleant or DSF. Additionally, a much higher proportion of orthorhombic crystals developed in relation to the monoclinic ones. Moreover, the mechanical responses were estimated from the microhardness experiments and significant improvements were found with increasing DSF contents. All of these findings indicate that the use of silanized DSF is a fairly good approach for the preparation of polymeric eco-composites, taking advantage of the widespread availability of this lignocellulosic material, which is otherwise wasted.

2018 ◽  
Vol 51 (6) ◽  
pp. 562-579 ◽  
Author(s):  
K Belkouicem ◽  
A Benarab ◽  
R Krache ◽  
R Benavente ◽  
E Pérez ◽  
...  

The influence of two thermal treatments on the structure, morphology, and ultimate properties exhibited by isotactic polypropylene (iPP), synthesized by conventional Ziegler–Natta iPP (Z-iPP) or metallocene iPP (m-iPP) catalysts, has been investigated in the present work. Novelty of this research consisted in the incorporation of a β nucleating agent in two different contents to the m-iPP. Results attained are compared with those found in the Z-iPP and important differences are observed. Differential scanning calorimetry and X-ray diffraction experiments revealed that coexistence of different crystalline lattices took place depending on the type of iPP: β and α forms were found in the β nucleated Z-iPP specimens, whereas α, β, and γ polymorphs could be developed in the m-iPP with nucleating agent. On the other hand, the iPP glass transition temperature ( Tg) did not exhibit a significant change because of the addition of β nucleant, as deduced from Dynamic Mechanical Thermal Analysis (DMTA) analysis. Moreover, the size and shape of the iPP spherulites was totally changed by the presence of the β agent. This nucleant promoted the formation of smaller spherulites in a greater amount, as demonstrated by optical microscopy. Concerning the mechanical parameters, microhardness, MH, and Young modulus, E, values were in the fast crystallized samples lower than those presented by their slowly cooled counterparts. A good balance in properties was seen for the slowly crystallized m-iPP that incorporated a 5 wt% content in β nucleating agent, this fact being ascribed to the coexistence of the three α, β, and γ polymorphs.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Diogo Montalvão ◽  
Francisca Sena Alçada ◽  
Francisco Manuel Braz Fernandes ◽  
Sancho de Vilaverde-Correia

The purpose of this study is to understand how the M-Wire alloy conditions the mechanical flexibility of endodontic rotary files at body temperature.Two different rotary instruments, a Profile GT 20/.06 and a Profile GT Series X 20/.06, were selected due to their geometrical similarity and their different constituent alloy. GT series X files are made from M-Wire, a Ni-Ti alloy allegedly having higher flexibility at body temperature. Both files were analysed by X-Ray Diffraction and Differential Scanning Calorimetry to investigate phase transformations and the effects of working temperature on these different alloys. Mechanical behaviour was assessed by means of static bending and torsional Finite Element simulations, taking into account the nonlinear superelastic behaviour of Ni-Ti materials. It was found that GT files present austenitic phase at body temperature, whereas GT series X present R-phase at temperatures under 40°C with a potential for larger flexibility. For the same load conditions, simulations showed that the slight geometrical differences between the two files do not introduce great disagreement in the instruments’ mechanical response. It was confirmed that M-Wire increases the instrument’s flexibility, mainly due to the presence of R-phase at body temperature.


2012 ◽  
Vol 182-183 ◽  
pp. 259-264
Author(s):  
Jia Wei Duan ◽  
Qiang Dou

In this study polypropylene (PP) composites containing β-nucleating agent (NT-C) and talc filler were prepared by melt compounding. The melting and crystallization behavior, morphology and mechanical properties of the composites were studied by means of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), polarized light microscopy (PLM) and mechanical tests. The results indicate that talc suppresses the formation of β phase, but promotes the formation of α phase. The Izod notched impact strength and tensile strength of β-PP/talc composites are superior to those of PP/talc composites, indicating an outstanding balance of stiffness and toughness of β-PP/talc composites.


2012 ◽  
Vol 549 ◽  
pp. 322-326 ◽  
Author(s):  
Yong Chen ◽  
Qiang Dou

The effect of a nucleating agent (NT-C) on the crystallization behavior of poly(lactic acid) (PLA) was studied. The melting and crystallization behavior and spherulitic morphology of the nucleated PLA were investigated by means of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarized light microscopy (PLM). It is found that the crystallization temperature and crystallinity increase, the spherulitic size decrease for the nucleated PLA. But the crystal structure of the nucleated PLA is not changed.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1777 ◽  
Author(s):  
Li ◽  
Xin ◽  
Song ◽  
Dong ◽  
Ben ◽  
...  

In this paper, the crystalline modification of isotactic polypropylene (PP) with a rare earth β nucleating agent (WBG) with different ultrasound conditions was investigated by scanning electron microscopy (SEM), wide-angle X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The relationship between the ultrasound conditions and the crystalline structure, as well as the mechanism for the behavior, were revealed. SEM showed that the dispersion of the nucleating agent in the PP matrix was better at shorter ultrasound distances. In addition, the higher the water cooling temperature, the better the nucleating agent was dispersed in the PP matrix. The results of XRD and DSC showed that the crystallinity and the relative content of the β-crystal were increased with nearer ultrasound distance, as well as increased in higher water cooling temperatures. In particular, under the same conditions, the crystallinity and the relative content of the β-crystal after ultrasonic treatment were much higher than those without ultrasound.


2016 ◽  
Vol 36 (4) ◽  
pp. 381-390 ◽  
Author(s):  
Bai Xue ◽  
Dan Guo ◽  
Jianjun Bao

Abstract In this paper, high-heat-resistant polymeric composite products were prepared via the traditional melt blending process by incorporating N,N′-bis(benzoyl) adipic acid dihydrazide (BAAD) into poly(l-lactic acid) (PLLA), which acted as an organic nucleating agent. The heat distortion temperature (HDT) of the PLLA/BAAD composite samples was measured by an HDT apparatus, and a high value of 96.2°C was achieved at a BAAD loading fraction of 0.5 wt.%, whereas, at the same processing conditions, the HDT of PLLA/talc specimens reached a similar value at a talc content of 20 wt.%, which was much higher than the BAAD content. Differential scanning calorimetry and X-ray diffraction analyses were applied to determine the melting and crystallization behavior of the PLLA/BAAD blends. Polarized optical microscopy was used to observe the crystalline morphologies. Thermogravimetric analysis was employed to study the effect of BAAD on the thermal stability of PLLA. Measurement of the mechanical property confirmed that the addition of BAAD was beneficial to the enhancement of the mechanical properties of the resulting blends. However, the tensile strength of the PLLA/talc composites decreased with increasing weight fraction of talc.


2016 ◽  
Vol 848 ◽  
pp. 733-737
Author(s):  
Hui Xia Xuan ◽  
Chun Ju He

Polypropylene (PP) membranes were respectively prepared using adipic acid (APA) and Sorbitol (NA-40) as nucleating agent via thermally induced phase separation (TIPS) method. The effects of nucleating agent content and cooling temperature on the structure and performance of membrane were investigated using scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). WAXD spectrogram indicates that three kinds of α, β and γ-form crystal were formed in this preparation process and the relative content of β-form crystal in membrane prepared by NA-40 system is higher than that of membrane formed by adipic acid. SEM images show that porous structure and cellular structure were observed on the surface and cross-section of membrane. The water flux, tensile strength and elongation increase with the addition of nucleating agent content and decrease with cooling temperature rising. This paper aims to choose proper nucleating agent NA-40 and coagulation temperature to improve the properties of PP membranes.


2017 ◽  
Vol 37 (7) ◽  
pp. 715-727 ◽  
Author(s):  
Yingchun Li ◽  
Shuai He ◽  
Hui He ◽  
Peng Yu ◽  
Dongqing Wang

Abstract This research designed a series of novel approaches aiming to tackle a long-standing problem that is the brittleness of polypropylene (PP) random copolymer (PPR) at low temperature. By introducing polyolefin elastomer (POE), the toughness of PPR was improved; talc improved the stiffness of PPR, low density polyethylene (LDPE) or high density PE (HDPE) improved the low temperature toughness of PPR, and annealing treatment also improved the low temperature toughness of PPR significantly. The addition of dicumyl peroxide (DCP) and triallyl isocyanurate (TAIC) increased its stiffness through the formation of cross-linking networks. Also, the crystallization behavior and morphology were investigated in detail. Differential scanning calorimetry (DSC) results indicated that the adoption of annealing treatment can improve the crystallinity of PPR, while a polarizing microscope revealed that the incorporation of foreign matter can facilitate the crystallization process of the matrix. X-ray diffraction (XRD) tests showed an unchanged polymorphic composition of PPR after introducing different additives, and scanning electron microscopy (SEM) indicated that annealing treatment can enhance interfacial interactions between the matrix and fillers.


2010 ◽  
Vol 1265 ◽  
Author(s):  
Daniel Caurant ◽  
Nolwenn Chouard ◽  
Odile Majerus ◽  
Jean-Luc Dussossoy ◽  
Aurelien Ledieu ◽  
...  

AbstractThe impact of Nd2O3, MoO3 and RuO2 addition on the competition between the crystallization of apatite Ca2Nd8(SiO4)6O2 and powellite CaMoO4 phases which both may appear in High Level Waste nuclear glass (under certain specific conditions of cooling and glass composition) has been studied on a simplified composition belonging to the system SiO2-Na2O-CaO-Al2O3-B2O3. X-ray diffraction (at room temperature and high temperature) and scanning electron microscopy measurements have been performed on five glasses under two different thermal treatments. We show that RuO2 acts as a nucleating agent for apatite. Moreover, neodymium and molybdenum cations seem to be very close in the glassy network as Nd2O3 addition stops the phase separation of molybdates and inhibits the crystallization of CaMoO4. On the contrary, MoO3 seems to favor the crystallization of apatite. For several samples, the evolution of the distribution of Nd3+ cations after crystallization was followed by optical absorption spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document