Cyclometalated Iridium(III) Complexes as High-Sensitivity Two-Photon Excited Mitochondria Dyes and Near-Infrared Photodynamic Therapy Agents

2020 ◽  
Vol 59 (20) ◽  
pp. 14920-14931
Author(s):  
Xu-Dan Bi ◽  
Rong Yang ◽  
Yue-Chen Zhou ◽  
Daomei Chen ◽  
Guo-Kui Li ◽  
...  
Author(s):  
Ruiyuan Liu ◽  
Yuping Zhou ◽  
Di Zhang ◽  
Genghan He ◽  
Chuang Liu ◽  
...  

Design and synthesis of near-infrared (NIR) emissive fluorophore for imaging of organelle and photodynamic therapy has received enormous attention. Hence, NIR emissive fluorophore of high-fidelity lysosome targeting, two-photon fluorescence imaging,...


2021 ◽  
Author(s):  
WEN-SHUO KUO ◽  
Chia-Yuan Chang ◽  
Ping-Ching Wu ◽  
Jiu-Yao Wang

Abstract BackgroundNitrogen doping and amino-group functionalization, which result in strong electron donation, can be achieved through chemical modification. Large π-conjugated systems of graphene quantum dot (GQD)-based materials acting as electron donors can be chemically manipulated with low two-photon excitation energy in a short photoexcitation time for improving the charge transfer efficiency of sorted nitrogen-doped amino acid–functionalized GQDs (sorted amino-N-GQDs). ResultsIn this study, a self-developed femtosecond Ti-sapphire laser optical system (222.7 nJ pixel−1 with 100-170 scans, approximately 0.65-1.11 s of total effective exposure times; excitation wavelength: 960 nm in the near-infrared II region) was used for chemical modification. The sorted amino-N-GQDs exhibited enhanced two-photon absorption, post-two-photon excitation stability, two-photon excitation cross-section, and two-photon luminescence through the radiative pathway. The lifetime and quantum yield of the sorted amino-N-GQDs decreased and increased, respectively. Furthermore, the sorted amino-N-GQDs exhibited excitation-wavelength-independent photoluminescence in the near-infrared region and generated reactive oxygen species after two-photon excitation. An increase in the size of the sorted amino-N-GQDs boosted photochemical and electrochemical efficacy and resulted in high photoluminescence quantum yield and highly efficient two-photon photodynamic therapy. ConclusionThe sorted dots can be used in two-photon contrast probes for tracking and localizing analytes during two-photon imaging in a biological environment and for conducting two-photon photodynamic therapy for eliminating infectious microbes.


Author(s):  
Yinuo Tu ◽  
Weikang Xia ◽  
Xu Wu ◽  
Lei Wang

Organelle-targeted two-photon near-infrared photosensitizers are highly desirable for photodynamic therapy (PDT) of cancer. Herein, in this contribution, we have developed a 2-dicyanomethylenethiazole based D-π-A structured near-infrared photosensitizer (TTR). TTR depicts...


2020 ◽  
Vol 11 (9) ◽  
pp. 2494-2503 ◽  
Author(s):  
Zheng Zheng ◽  
Haixiang Liu ◽  
Shaodong Zhai ◽  
Haoke Zhang ◽  
Guogang Shan ◽  
...  

Mitochondria-targeted photosensitizers with highly efficient singlet oxygen generation, bright near-infrared AIE and good two-photon absorption are obtained through ingenious molecular engineering for cancer cell-selective photodynamic therapy.


Sign in / Sign up

Export Citation Format

Share Document