scholarly journals Strain in Silica-Supported Ga(III) Sites: Neither Too Much nor Too Little for Propane Dehydrogenation Catalytic Activity

Author(s):  
C. S. Praveen ◽  
A. P. Borosy ◽  
C. Copéret ◽  
A. Comas-Vives
Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Su-Un Lee ◽  
You-Jin Lee ◽  
Soo-Jin Kwon ◽  
Jeong-Rang Kim ◽  
Soon-Yong Jeong

With the growing global propylene demand, propane dehydrogenation (PDH) has attracted great attention for on-purpose propylene production. However, its industrial application is limited because catalysts suffer from rapid deactivation due to coke deposition and metal catalyst sintering. To enhance metal catalyst dispersion and coke resistance, Pt-based catalysts have been widely investigated with various porous supports. In particular, zeolite can benefit from large surface area and acid sites, which favors high metal dispersion and promoting catalytic activity. In this work, we investigated the PDH catalytic properties of Beta zeolites as a support for Pt-Sn based catalysts. In comparison with Pt-Sn supported over θ-Al2O3 and amorphous silica (Q6), Beta zeolite-supported Pt-Sn catalysts exhibited a different reaction trend, achieving the best propylene selectivity after a proper period of reaction time. The different PDH catalytic behavior over Beta zeolite-supported Pt-Sn catalysts has been attributed to their physicochemical properties and reaction mechanism. Although Pt-Sn catalyst supported over Beta zeolite with low acidity showed low Pt dispersion, it formed a relatively lower amount of coke on PDH reaction and maintained a high surface area and active Pt surfaces, resulting in enhanced stability for PDH reaction. This work can provide a better understanding of zeolite-supported Pt-Sn catalysts to improve PDH catalytic activity with high selectivity and low coke formation.


Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 446 ◽  
Author(s):  
Jae-Won Jung ◽  
Won-Il Kim ◽  
Jeong-Rang Kim ◽  
Kyeongseok Oh ◽  
Hyoung Lim Koh

Pt–Sn/Al2O3 catalysts were prepared by the direct reduction method at temperatures from 450 to 900 °C, denoted as an SR series (SR450 to SR900 according to reduction temperature). Direct reduction was performed immediately after catalyst drying without a calcination step. The activity of SR catalysts and a conventionally prepared (Cal600) catalyst were compared to evaluate its effect on direct reduction. Among the SR catalysts, SR550 showed overall higher conversion of propane and propylene selectivity than Cal600. The nano-sized dispersion of metals on SR550 was verified by transmission electron microscopy (TEM) observation. The phases of the bimetallic Pt–Sn alloys were examined by X-ray diffraction, TEM, and energy dispersive X-ray spectroscopy (EDS). Two characteristic peaks of Pt3Sn and PtSn alloys were observed in the XRD patterns, and these phases affected the catalytic performance. Moreover, EDS confirmed the formation of Pt3Sn and PtSn alloys on the catalyst surface. In terms of catalytic activity, the Pt3Sn alloy showed better performance than the PtSn alloy. Relationships between the intermetallic interactions and catalytic activity were investigated using X-ray photoelectron spectroscopy. Furthermore, qualitative analysis of coke formation was conducted after propane dehydrogenation using differential thermal analysis.


2017 ◽  
Vol 348 ◽  
pp. 282-290 ◽  
Author(s):  
Tatyana Otroshchenko ◽  
Vita A. Kondratenko ◽  
Uwe Rodemerck ◽  
David Linke ◽  
Evgenii V. Kondratenko

RSC Advances ◽  
2015 ◽  
Vol 5 (79) ◽  
pp. 64689-64695 ◽  
Author(s):  
Ke Xia ◽  
Wan-Zhong Lang ◽  
Pei-Pei Li ◽  
Xi Yan ◽  
Ya-Jun Guo

The catalytic activity induction and deactivation of PtIn/Mg(Al)O catalysts for propane dehydrogenation reaction are experimentally verified.


2020 ◽  
Author(s):  
C. S. Praveen ◽  
A. P. Borosy ◽  
Christophe Copéret ◽  
Aleix Comas Vives

<p>Well-defined Ga(III) sites on SiO<sub>2</sub> are highly active, selective, and stable catalysts in the propane dehydrogenation reaction. In this contribution, we evaluate the catalytic activity towards propane dehydrogenation of tri-coordinated and tetra-coordinated Ga(III) sites on SiO<sub>2</sub> by means of first principles calculations using realistic amorphous periodic SiO<sub>2</sub>models. We evaluated the three reaction steps in propane dehydrogenation, namely the C-H activation of propane to form propyl, the beta-hydride elimination transfer to form propene, and a Ga-hydride, and the H-H coupling to release H<sub>2</sub>, regenerating the initial Ga-O bond and closing the catalytic cycle. Our work shows how Brønsted-Evans-Polanyi relationships are followed for these three reaction steps on Ga(III) sites on SiO<sub>2</sub> and highlights the role of the strain of the reactive Ga-O pairs on such sites of realistic amorphous SiO<sub>2</sub> models. While highly strained sites are very reactive sites for the initial C-H activation, they are more difficult to regenerate. The corresponding less strained sites are not reactive enough, pointing to the need of a right balance in strain to be an effective site for propane dehydrogenation. Overall, our work provides an understanding of the intrinsic activity of acidic Ga single sites towards the propane dehydrogenation reaction and paves the road towards the design and prediction of better single-site catalysts on SiO<sub>2 </sub>for the propane dehydrogenation reaction.</p>


2021 ◽  
Vol 43 (3) ◽  
pp. 342-342
Author(s):  
Arshid M Ali Arshid M Ali ◽  
Abdulrahim A Zahrani Abdulrahim A Zahrani ◽  
Muhammad A Daous Muhammad A Daous ◽  
Muhammad Umar Seetharamulu Podila and Lachezar A Petrov Muhammad Umar Seetharamulu Podila and Lachezar A Petrov

This study is aimed to understand the role of alkaline earth elements (AEE) to the catalytic performance of PtSnM1/γ-Al2O3catalystfor the direct propane dehydrogenation (where M1 = Mg, Ca, Sr, Ba). All the catalysts were prepared by using wet impregnation.The overall catalytic performance of all the catalysts was studied at different reaction temperatures, feed composition ratios and GHSV. The best operating reaction conditions were575and#186;C, feed composition ratio of C3H8:H2:N2 = 1.0:0.5:5.5 and GHSV of 3800h-1. An optimal addition of “Ca” to PtSn//γ-Al2O3 catalyst, enhanced the catalytic activity of PtSnM1/γ-Al2O3 catalyst in comparison to other studied AEE. This catalyst had shown the highest propane conversion (~ 55.8 %) with 95.7 % propylene selectivity and least coke formation (7.11 mg.g-1h-1). In general, the increased catalytic activity of PtSnM1/γ-Al2O3 is attributed to the reduced coking extent during the reaction. In addition, the enhanced thermal stability of the PtSnCa/γ-Al2O3catalystis because of the protective layer betweenγ-Al2O3 and active metal, which allows the formation of active species such as PtSn, PtCa2 and Pt2Al phases?


2017 ◽  
Vol 147 (3) ◽  
pp. 622-632 ◽  
Author(s):  
Yongju Yun ◽  
Joyce R. Araujo ◽  
Gerome Melaet ◽  
Jayeon Baek ◽  
Braulio S. Archanjo ◽  
...  

2019 ◽  
Vol 9 (24) ◽  
pp. 6993-7002 ◽  
Author(s):  
Yansu Wang ◽  
Zhong-Pan Hu ◽  
Wenwen Tian ◽  
Lijiao Gao ◽  
Zheng Wang ◽  
...  

Highly stable Pt/Sn-Si-beta catalysts were prepared via an improved post-synthesis method, exhibiting high catalytic activity, good selectivity and excellent stability for propane dehydrogenation to propene.


2020 ◽  
Vol 60 (5) ◽  
pp. 585-591
Author(s):  
A. A. Revina ◽  
E. B. Markova ◽  
O. V. Suvorova ◽  
T. A. Tereshina ◽  
A. G. Cherednichenko

Sign in / Sign up

Export Citation Format

Share Document