Investigation of Differentially Expressed Proteins Induced by Alteration of Natural Se Uptake with Ultrahigh-Performance Liquid Chromatography Quadrupole Orbitrap Uncovers the Potential Nutritional Value in Se-Enriched Green Tea

2020 ◽  
Vol 68 (23) ◽  
pp. 6316-6332
Author(s):  
Wei Jia ◽  
Yuyang Liu ◽  
Lin Shi ◽  
Xiaogang Chu

Metabolites ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 166 ◽  
Author(s):  
Qianqian He ◽  
Xinmei Fang ◽  
Tianhui Zhu ◽  
Shan Han ◽  
Hanmingyue Zhu ◽  
...  

Bambusa pervariabilis McClure × Dendrocalamopsis grandis (Q.H.Dai & X.l.Tao ex Keng f.) Ohrnb. blight is a widespread and dangerous forest fungus disease, and has been listed as a supplementary object of forest phytosanitary measures. In order to study the control of B. pervariabilis × D. grandis blight, this experiment was carried out. In this work, a toxin purified from the pathogen Arthrinium phaeospermum (Corda) Elli, which causes blight in B. pervariabilis × D. grandis, with homologous heterogeneity, was used as an inducer to increase resistance to B. pervariabilis × D. grandis. A functional analysis of the differentially expressed proteins after induction using a tandem mass tag labeling technique was combined with mass spectrometry and liquid chromatography mass spectrometry in order to effectively screen for the proteins related to the resistance of B. pervariabilis × D. grandis to blight. After peptide labeling, a total of 3320 unique peptides and 1791 quantitative proteins were obtained by liquid chromatography mass spectrometry analysis. Annotation and enrichment analysis of these peptides and proteins using the Gene ontology and Kyoto Encyclopedia of Genes and Genomes databases with bioinformatics software show that the differentially expressed protein functional annotation items are mainly concentrated on biological processes and cell components. Several pathways that are prominent in the Kyoto Encyclopedia of Genes and Genomes annotation and enrichment include metabolic pathways, the citrate cycle, and phenylpropanoid biosynthesis. In the Protein-protein interaction networks four differentially expressed proteins-sucrose synthase, adenosine triphosphate-citrate synthase beta chain protein 1, peroxidase, and phenylalanine ammonia-lyase significantly interact with multiple proteins and significantly enrich metabolic pathways. To verify the results of tandem mass tag, the candidate proteins were further verified by parallel reaction monitoring, and the results were consistent with the tandem mass tag data analysis results. It is confirmed that the data obtained by tandem mass tag technology are reliable. Therefore, the differentially expressed proteins and signaling pathways discovered here is the primary concern for subsequent disease resistance studies.



2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jing-Hua Zhang ◽  
Yue-Jia Shao ◽  
Zhen Hui ◽  
Su-Lei Wang ◽  
Chi Huang ◽  
...  

Abstract Background Stroke has always been a major threat worldwide but is most severe in China, with 2.5 million new stroke cases each year and 7.5 million stroke survivors, placing a heavy burden on the social and national health care systems. Zhishi Rhubarb Soup (ZRS) is a traditional Chinese medicine (TCM) that has been used clinically for many years in China. To explore the potential mechanism of ZRS in the treatment of stroke, liquid chromatography with mass spectrometry (LC–MS) was performed. Methods In this study, a quantitative proteomic method with LC–MS was used to analyse the proteomic differences between MACO samples treated with ZRS and those without ZRS treatment. Results Liquid chromatography with mass spectrometry (LC–MS) analysis led to the identification of 35,006 peptides, with 5160.0 proteins identified and 4094.0 quantified. Significantly differentially expressed proteins were identified through data analysis, and the difference was found to be more than 1.2 times (P < 0.05). The Gene Ontology (GO) analysis provided a summary of the dysregulated protein expression in the biological process (BP), cell component (CC), and molecular function (MF) categories. Proteins related to brain repair, including BDNF, IL-10, IL-6, and TGF-β, were found to change significantly, partially demonstrating the effectiveness of ZRS to attenuate tissue injury. Conclusion In this study, LC–MS/MS was performed to assess the effects of ZRS on differentially expressed proteins in rats with cerebral infarction. These promising results could help to improve the understanding of the effects of drugs on stroke.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shujiang Li ◽  
Xinmei Fang ◽  
Shan Han ◽  
Tianhui Zhu ◽  
Hanmingyue Zhu

AbstractIn this study, TMT (tandem mass tag)-labeled quantitative protein technology combined with LC–MS/MS (liquid chromatography-mass spectrometry/mass spectrometry) was used to isolate and identify the proteins of the hybrid bamboo (Bambusa pervariabilis × Dendrocalamopsis grandis) and the bamboo inoculated with the pathogenic fungi Arthrinium phaeospermum. A total of 3320 unique peptide fragments were identified after inoculation with either A. phaeospermum or sterile water, and 1791 proteins were quantified. A total of 102 differentially expressed proteins were obtained, of which 66 differential proteins were upregulated and 36 downregulated in the treatment group. Annotation and enrichment analysis of these peptides and proteins using the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases with bioinformatics software showed that the differentially expressed protein functional annotation items were mainly concentrated on biological processes and cell components. The LC–PRM/MS (liquid chromatography-parallel reaction monitoring/mass spectrometry) quantitative analysis technique was used to quantitatively analyze 11 differential candidate proteins obtained by TMT combined with LC–MS/MS. The up–down trend of 10 differential proteins in the PRM results was consistent with that of the TMT quantitative analysis. The coincidence rate of the two results was 91%, which confirmed the reliability of the proteomic results. Therefore, the differentially expressed proteins and signaling pathways discovered here may be the further concern for the bamboo-pathogen interaction studies.



2012 ◽  
Vol 26 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Nai-Jun Fan ◽  
Chun-Fang Gao ◽  
Chang-Song Wang ◽  
Jing-Jing Lv ◽  
Guang Zhao ◽  
...  

Despite the wide range of available colorectal cancer (CRC) screening tests, less than 50% of cases are detected at early stages. However, the identification of differentially expressed proteins or novel protein biomarkers in CRC may have some utility and, ultimately, improve patient care and survival. Proteomics combined with mass spectroscopy and liquid chromatography are emerging as powerful tools that have led to the discovery of potential markers in cancer biomarker discovery in several types of cancers. This article describes a novel technology that uses isotopic reagents to tag selected proteins that show a consistent pattern of differential expression in CRC.OBJECTIVE: To identify and validate potential biomarkers of colorectal adenocarcinoma using a proteomic approach.METHODS: Multidimensional liquid chromatography/mass spectrometry was used to analyze biological samples labelled with isobaric mass tags for relative and absolute quantitation to identify differentially expressed proteins in human colorectal adenocarcinoma and paired normal mucosa for the discovery of cancerous biomarkers. Cancerous and noncancerous samples were compared using online and offline separation. Protein identification was performed using mass spectrometry. The downregulation of gelsolin protein in colorectal adenocarcinoma samples was confirmed by Western blot analysis and validated using immunohistochemistry.RESULTS: A total of 802 nonredundant proteins were identified in colorectal adenocarcinoma samples, 82 of which fell outside the expression range of 0.8 to 1.2, and were considered to be potential cancer-specific proteins. Immunohistochemistry revealed a complete absence of gelsolin expression in 86.89% of samples and a reduction of expression in 13.11% of samples, yielding a sensitivity of 86.89% and a specificity of 100% for distinguishing colorectal adenocarcinoma from normal tissue.CONCLUSIONS: These findings suggest that decreased expression of gelsolin is a potential biomarker of colorectal adenocarcinoma.



2020 ◽  
Author(s):  
Huizhen Li ◽  
Nan Shen ◽  
Lin Mao ◽  
Meijia Chen ◽  
Xuan Zhou ◽  
...  

Abstract Background: Adolescent idiopathic scoliosis (AIS) is the most common spine deformity, but biomarkers for its condition are lacking. Rhodopsin A (RhoA) and voltage-dependent anion-selective channel 1 (VDAC1) in plasma exosomes were defined as differentially expressed proteins between AIS patients and healthy controls. The purpose of this study was to assess exosomes as biomarkers for the occurrence and progression of AIS. Methods:We recruited 10 AIS patients and 8 healthy controls to detect expressed proteins from plasma by liquid chromatography coupled to tandem mass spectrometry. Plasma samples were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Pathway analysis identified that the VDAC1 and RhoA proteins were alterations expressed in the AIS patients, with the most different alteration was found in extracellular exosomes. Ultracentrifugation was carried out to isolate exosomes from plasma. Verification of the most differentially expressed protein was accessed by Western blot analysis and bioinformatics analysis was performed to predict the pathway of it.Results: 42 of significantly differentially expressed proteins were found in all subjects, and 17 proteins had significant difference. The differentially expressed proteins were enriched in plasma exosomes, and some proteins, such as FN1, were upregulated and others, such as VDAC1, RhoA and AHNAK, were downregulated in the AIS patients. Furthermore, ultracentrifugation was carried out to isolate exosomes from plasma, and RhoA and VDAC1 proteins in plasma exosomes were verified to downregulate by western blot. KEGG signaling pathways were used to predict potential pathways involved in the RhoA and VDAC1 proteins in the AIS patients. We found that the RhoA protein influences AIS probably through the chemokine signaling pathway, platelet activation and cAMP signaling pathway, and the VDAC1 protein is a key factor that participates in the necroptosis pathway, acting on the development of AIS.Conclusions: Consequently, this study mapped a profile of plasma protein, found the differentially expressed protein in AIS, which indicating that plasma exosomes, as a novel biomarker with high specificity, could be associated with the severity of AIS.



1999 ◽  
Vol 37 (2) ◽  
pp. 115-121 ◽  
Author(s):  
A. F. Cunha ◽  
M. V. Sousa ◽  
S. P. Silva ◽  
R. S. A. JesuIno ◽  
C. M. A. Soares ◽  
...  


2020 ◽  
Vol 17 ◽  
Author(s):  
Qian Lu ◽  
Hai-Zhu Xing ◽  
Nian-Yun Yang

Background: CCl4 acute liver injury (ALI) is a classical model for experimental research. However, there are few reports involved in the fundamental research of CCl4-induced ALI Ligustri Lucidi Fructus (LLF) are and its prescription have been used to treat hepatitis illness clinically. LLF and its active ingredients displayed anti-hepatitis effects, but the mechanism of function has not been fully clarified Objective: To investigate the proteomic analysis of CCl4-induced ALI, and examine the effects of active total glycosides (TG) from LLF on ALI of mice4, including histopathological survey and proteomic changes of liver tissues, and delineate the possible underlying mechanism. Methods: CCl4 was used to produce ALI mice model. The model mice were intragastrically administrated with TG and the liver his-topathological changes of mice were examined. At the end of test, mice liver samples were collected, after protein denaturation, re-duction, desalination and enzymatic hydrolysis, identification was carried out by nano LC-ESI-OrbiTrap MS/MS technology. The data was processed by Maxquant software. The differentially-expressed proteins were screened and identified, and their biological information was also analyzed based on GO and KEGG analysis. Key protein expression was validated by Western blot analysis Results: A total of 705 differentially-expressed proteins were identified during the normal, model and administration group. 9 signifi-cant differential proteins were focused based on analysis. Liver protein expression changes of CCl4-induced ALI mice were mainly involved in several important signal channels, namely FoxO signaling pathway, autophagy-animal, insulin signaling pathway. TG has anti-liver damnification effect in ALI mice, the mechanism of which is related to FoxO1 and autophagy pathways Conclusion: CCl4 inhibited expression of insulin-Like growth factor 1 (Igf1) and 3-phosphoinositide-dependent protein kinase 1 (Pdpk1) in liver cells and induced insulin resistance, thus interfered with mitochondrial autophagy and regeneration of liver cells and the metabolism of glucose and lipid, and caused hepatic necrosis in mice. TG resisted liver injury in mice. TG adjusted the expression level of key proteins Igf1 and Pdpk1 after liver injury and improved insulin resistance, thus promoted autophagy and resisted the liver damage



Author(s):  
Yobana Armenta-Medina ◽  
Ivette Martínez-Vieyra ◽  
Oscar Medina-Contreras ◽  
Claudia G. Benitez-Cardoza ◽  
Albertana Jiménez-Pineda ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document