scholarly journals Correction to Gum Arabic-Mediated Synthesis of Glyco-pea Protein Hydrolysate via Maillard Reaction Improves Solubility, Flavor Profile, and Functionality of Plant Protein

Author(s):  
Fengchao Zha ◽  
Zhongyu Yang ◽  
Jiajia Rao ◽  
Bingcan Chen
2016 ◽  
Vol 82 ◽  
pp. 112-120 ◽  
Author(s):  
Guowan Su ◽  
Tiantian Zhao ◽  
Yaqi Zhao ◽  
Dongxiao Sun-Waterhouse ◽  
Chaoying Qiu ◽  
...  

Appetite ◽  
2007 ◽  
Vol 49 (1) ◽  
pp. 295
Author(s):  
C.D. Häberer ◽  
K. Diepvens ◽  
N. Geary ◽  
W. Langhans

Author(s):  
Osvaldir Pereira Taranto ◽  
R. F. Nascimento ◽  
K Andreola ◽  
J. G. Rosa

This study aimed to compare the agglomeration process of pea protein isolate (PPI) using water and aqueous gum Arabic solution as binder liquids. Drying air temperature and binder flow rate were set at 75 °C and 3.1 mL/min, respectively. Moisture content, mean particle size, wetting time and flowability were analyzed. Using water as binder liquid, the responses were (4.0 ± 0.4)%, 316.13 ± 16.73 μm, 10 s and free flow, respectively. Aqueous gum Arabic solution provided (2.9 ± 0.5)%, 462.67 ± 51.23 μm, 3 s and free flow as responses. Gum Arabic solution showed to be a more promising binder.Keywords: Agglomeration; Pulsed fluidized bed; Pea protein isolate; Wetting time; Flowability


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 721
Author(s):  
Liang ◽  
Chen ◽  
Yang ◽  
Lai ◽  
Yang ◽  
...  

Advanced glycation end products (AGEs), which are present in heat-processed foods, have been associated with several chronic diseases. Sodium chloride (NaCl) modulates the formation of furfurals and acrylamide in the Maillard reaction; however, the effects of NaCl on AGE formation are inconsistent. In this study, we investigated the effects of NaCl on pyrraline formation using glucose-lysine model systems. NaCl, especially at 0.50%, promoted Maillard browning and pyrraline formation, with a simultaneous increase in the 3-deoxyglucosone concentration. To reduce the rate of pyrraline formation, NaCl coated with different gums and starches were used. The results showed that NaCl encapsulation is an effective approach to mitigate pyrraline and 3-deoxyglucosone formation. The content of NaCl in the microparticles were 284 ± 12, 269 ± 6, 258 ± 8, 247 ± 10, 273 ± 16, and 288 ± 15 mg/g (coated with waxy maize starch, normal maize starch, HYLON VII high amylose maize starch, gelatinized resistant starch, xanthan gum, and gum arabic, respectively). The heat resistance of the coating material was negatively correlated with the pyrraline and 3-deoxyglucosone formation, whereas the solubility of the coating material had the opposite results. Coating the material with gum had little effects on the reduction of pyrraline and 3-deoxyglucosone.


2019 ◽  
Vol 26 (5) ◽  
pp. 369-378
Author(s):  
Asli Can Karaca

The goal of this research was to determine the physicochemical and emulsifying properties of pea protein, gum arabic, and maltodextrin and to investigate their potential for stabilizing black pepper seed oil emulsions and acting as carrier materials for spray dried microcapsules. The moisture content and water activity of pea protein and maltodextrin (∼5.5 g/100 g and ∼0.22) were found to be significantly lower than that of gum arabic (11.5 g/100 g and 0.46) whereas the glass transition temperatures of pea protein and maltodextrin (∼99.4 ℃) was significantly higher than that of gum arabic (72 ℃). Pea protein showed the highest viscosity (53.8 mPa s), the lowest surface tension (42.5 mN/m), and interfacial tension (10.5 mN/m) among the biopolymer materials studied. A mixture design was employed to investigate the effect of biopolymer formulation on droplet size and creaming stability of black pepper seed oil emulsions. Stable emulsions with relatively smaller droplet size were spray dried to produce microcapsules. Spray dried black pepper seed oil microcapsules produced with 1% pea protein and 39% maltodextrin had low surface oil (∼0.8%) and high encapsulation efficiency (95%). The results of this study suggest that pea protein in combination with maltodextrin can be used as carrier materials in encapsulation of black pepper seed oil.


2015 ◽  
Vol 6 (6) ◽  
pp. 1919-1927 ◽  
Author(s):  
Fengchao Zha ◽  
Binbin Wei ◽  
Shengjun Chen ◽  
Shiyuan Dong ◽  
Mingyong Zeng ◽  
...  

A shrimp by-product protein hydrolysate via the Maillard reaction could alleviate cellular damage, but result in higher HMF and loss of nutritional quality.


Sign in / Sign up

Export Citation Format

Share Document