Nobiletin and 5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone Ameliorate 12-O-Tetradecanoylphorbol-13-acetate-Induced Psoriasis-Like Mouse Skin Lesions by Regulating the Expression of Ki-67 and Proliferating Cell Nuclear Antigen and the Differentiation of CD4+ T Cells through Mitogen-Activated Protein Kinase Signaling Pathways

2018 ◽  
Vol 66 (31) ◽  
pp. 8299-8306 ◽  
Author(s):  
Guliang Yang ◽  
Shiming Li ◽  
Yiwen Yang ◽  
Li Yuan ◽  
Peilei Wang ◽  
...  
1997 ◽  
Vol 325 (2) ◽  
pp. 435-440 ◽  
Author(s):  
Antonio GOMEZ-MUÑOZ ◽  
Laura M. FRAGO ◽  
Luis ALVAREZ ◽  
Isabel VARELA-NIETO

We found that natural (long-chain) ceramide 1-phosphate can be dispersed into aqueous solution when dissolved in an appropriate mixture of methanol/dodecane (49:1, v/v). This solvent mixture facilitates the interaction of this phosphosphingolipid with cells. Under these conditions, incubation of EGFR T17 fibroblasts with natural ceramide 1-phosphate caused a potent stimulation of DNA synthesis. This effect was accompanied by an increase in the levels of proliferating-cell nuclear antigen. Concentrations of natural ceramide 1-phosphate that stimulated the synthesis of DNA did not inhibit adenylate cyclase activity, nor did they stimulate phospholipase D. Natural ceramide 1-phosphate did not alter the cellular phosphorylation state of tyrosine residues or of mitogen-activated protein kinase. Furthermore, natural ceramide 1-phosphate failed to induce the expression of the proto-oncogenes c-myc and c-fos. Both the stimulation of DNA synthesis and the induction of proliferating-cell nuclear antigen by natural ceramide 1-phosphate were inhibited by natural ceramides. This work suggests that the use of methanol and dodecane to deliver natural ceramide 1-phosphate to cells may be useful for elucidation of the biological function(s) and mechanism(s) of action of ceramide 1-phosphate.


1997 ◽  
Vol 235 (12) ◽  
pp. 767-772 ◽  
Author(s):  
Tatsuo Kodama ◽  
Katsue Kawamoto ◽  
Tatsuro Kono ◽  
Yuzo Shibuya ◽  
Tomoichi Setogawa

Blood ◽  
1994 ◽  
Vol 84 (10) ◽  
pp. 3413-3421 ◽  
Author(s):  
A Szepesi ◽  
EW Gelfand ◽  
JJ Lucas

Abstract The proliferating cell nuclear antigen (PCNA) is an auxiliary protein of DNA polymerase delta and appears to be needed for both DNA synthesis and DNA repair. It is present in low amount in resting normal human T lymphocytes and, upon mitogenic stimulation with phorbol dibutyrate and ionomycin, begins to increase in mid-G1 phase, approximately 12 to 15 hours before entry into S phase. PCNA continues to increase in amount throughout the cell cycle and remains high in proliferating cultures. PCNA was extracted from activated normal T cells and from the transformed T-lymphoblastoid cell line Jurkat by a method that recovered approximately 98% of total cellular PCNA but yet retained its associations with other proteins. PCNA immunoprecipitates possessed H1 histone kinase activity, which increased in parallel with increasing cellular content of PCNA. Both the cdc2 and cdk2 kinases were found associated with PCNA in normal T cells, in amounts consistent with detected kinase activity. The results indicate that PCNA is not an inhibitory molecule of cdk/cyclin activity. Both normal and transformed T cells contained PCNA in association with cdk2, cdk4, cdk5, and cdk6, with the amount of PCNA associated with these molecules increasing in the order listed. Relatively high amounts of PCNA were also found associated with cyclins D2 and D3, the major cyclin partners of cdk6 in T cells. Though detected in normal cells, PCNA/cdc2 complexes were present in exceedingly low amount, if at all, in Jurkat cells. This cell line appeared to contain more of nearly all of the cdk and cyclin molecules analyzed, but there seemed to be little difference in the patterns of association of these molecules with PCNA in the cell line as compared with normal human T cells.


1998 ◽  
Vol 124 (9) ◽  
pp. 497-502 ◽  
Author(s):  
Leena Setälä ◽  
Veli-Matti Kosma ◽  
Pertti Lipponen ◽  
Anita Naukkarinen ◽  
Stig Nordling ◽  
...  

2006 ◽  
Vol 174 (5) ◽  
pp. 625-630 ◽  
Author(s):  
Vlastimil Srsen ◽  
Nicole Gnadt ◽  
Alexander Dammermann ◽  
Andreas Merdes

Previous evidence has indicated that an intact centrosome is essential for cell cycle progress and that elimination of the centrosome or depletion of individual centrosome proteins prevents the entry into S phase. To investigate the molecular mechanisms of centrosome-dependent cell cycle progress, we performed RNA silencing experiments of two centrosome-associated proteins, pericentriolar material 1 (PCM-1) and pericentrin, in primary human fibroblasts. We found that cells depleted of PCM-1 or pericentrin show lower levels of markers for S phase and cell proliferation, including cyclin A, Ki-67, proliferating cell nuclear antigen, minichromosome maintenance deficient 3, and phosphorylated retinoblastoma protein. Also, the percentage of cells undergoing DNA replication was reduced by >50%. At the same time, levels of p53 and p21 increased in these cells, and cells were predisposed to undergo senescence. Conversely, depletion of centrosome proteins in cells lacking p53 did not cause any cell cycle arrest. Inhibition of p38 mitogen-activated protein kinase rescued cell cycle activity after centrosome protein depletion, indicating that p53 is activated by the p38 stress pathway.


Sign in / Sign up

Export Citation Format

Share Document