scholarly journals Fragment-Based Local Coupled Cluster Embedding Approach for the Quantification and Analysis of Noncovalent Interactions: Exploring the Many-Body Expansion of the Local Coupled Cluster Energy

Author(s):  
Soumen Ghosh ◽  
Frank Neese ◽  
Róbert Izsák ◽  
Giovanni Bistoni
2016 ◽  
Vol 7 (3) ◽  
pp. 1712-1728 ◽  
Author(s):  
Martin A. Blood-Forsythe ◽  
Thomas Markovich ◽  
Robert A. DiStasio ◽  
Roberto Car ◽  
Alán Aspuru-Guzik

This work develops analytical forces for the many-body dispersion model of collective van der Waals interactions.


1968 ◽  
Vol 111 (1) ◽  
pp. 392-416 ◽  
Author(s):  
K DIETRICH ◽  
K HARA

2017 ◽  
Author(s):  
Manoj Kumar Kesharwani ◽  
Nitai Sylvetsky ◽  
Debashree Manna ◽  
Jan M.L. Martin

<p>We have re-evaluated the X40x10 benchmark for halogen bonding using conventional and explicitly correlated coupled cluster methods. For the aromatic dimers at small separation, improved CCSD(T)–MP2 “high-level corrections” (HLCs) cause substantial reductions in the dissociation energy. For the bromine and iodine species, (n-1)d subvalence correlation increases dissociation energies, and turns out to be more important for noncovalent interactions than is generally realized. As in previous studies, we find that the most efficient way to obtain HLCs is to combine (T) from conventional CCSD(T) calculations with explicitly correlated CCSD-F12–MP2-F12 differences.</p>


2018 ◽  
Author(s):  
Pavel Pokhilko ◽  
Evgeny Epifanovsky ◽  
Anna I. Krylov

Using single precision floating point representation reduces the size of data and computation time by a factor of two relative to double precision conventionally used in electronic structure programs. For large-scale calculations, such as those encountered in many-body theories, reduced memory footprint alleviates memory and input/output bottlenecks. Reduced size of data can lead to additional gains due to improved parallel performance on CPUs and various accelerators. However, using single precision can potentially reduce the accuracy of computed observables. Here we report an implementation of coupled-cluster and equation-of-motion coupled-cluster methods with single and double excitations in single precision. We consider both standard implementation and one using Cholesky decomposition or resolution-of-the-identity of electron-repulsion integrals. Numerical tests illustrate that when single precision is used in correlated calculations, the loss of accuracy is insignificant and pure single-precision implementation can be used for computing energies, analytic gradients, excited states, and molecular properties. In addition to pure single-precision calculations, our implementation allows one to follow a single-precision calculation by clean-up iterations, fully recovering double-precision results while retaining significant savings.


1988 ◽  
Vol 53 (9) ◽  
pp. 1919-1942 ◽  
Author(s):  
Josef Paldus ◽  
Paul E. S. Wormer ◽  
Marc Benard

The performance of various variational and non-variational approaches to the many-electron correlation problem is examined for a simple four-electron model system consisting of two stretched hydrogen molecules in trapezoidal, rectangular and linear configurations, in which the degree of quasi-degeneracy can be continuously varied from a non-degenerate to an almost degenerate situation. In contrast to an earlier work (K. Jankowski and J. Paldus, Int. J. Quantum Chem. 18, 1243 (1980)) we employ a double-zeta plus polarization basis and examine both single reference and multireference configuration interaction and coupled-cluster-type approaches. The performance of various Davidson-type corrections is also investigated.


Sign in / Sign up

Export Citation Format

Share Document