Molecular Dynamics Driven by the Many-Body Expansion (MBE-MD)

Author(s):  
Joseph P. Heindel ◽  
Sotiris S. Xantheas
2022 ◽  
Author(s):  
Chenghan Li ◽  
Francesco Paesani ◽  
Gregory A. Voth

It is a common practice in ab initio molecular dynamics (AIMD) simulations of water to use an elevated temperature to overcome the over-structuring and slow diffusion predicted by most current density functional theory (DFT) models. The simulation results obtained in this distinct thermodynamic state are then compared with experimental data at ambient temperature based on the rationale that a higher temperature effectively recovers nuclear quantum effects (NQEs) that are missing in the classical AIMD simulations. In this work, we systematically examine the foundation of this assumption for several DFT models as well as for the many-body MB-pol model. We find for the cases studied that a higher temperature does not correctly mimic NQEs at room temperature, which is especially manifest in significantly different three-molecule correlations as well as hydrogen bond dynamics. In many of these cases, the effects of NQEs are the opposite of the effects of carrying out the simulations at an elevated temperature.


1988 ◽  
Vol 141 ◽  
Author(s):  
Paul A. Taylor ◽  
Brian W. Dodson

AbstractMolecular dynamics shock wave simulations have been performed, which for the first time include a realistic many-body description of the atomic interactions. The structural instabilities observed in the shock-front structure are dramatically influenced by the many-body effects of these atomic interactions.


1997 ◽  
Vol 08 (06) ◽  
pp. 1217-1221 ◽  
Author(s):  
J. I. Akhter ◽  
K. Yaldram

Molecular dynamics studies of the temperature dependence of self diffusion coefficient of palladium has been carried out using the many body potential generated by the Embedded Atom Method of Daw and Baskes. These values as well as the results for activation energy are compared with similar results for other fcc metals.


2009 ◽  
Vol 407-408 ◽  
pp. 368-371 ◽  
Author(s):  
Jia Chun Wang ◽  
Ji Min Zhang ◽  
Na Li ◽  
Yun Peng Kou

In nanometric cutting process, the actual material removal can take place at atomic level, which makes it difficult or impossible to observe the machining phenomena and measure the cutting parameters in experiments. However, it is crucial to investigate the cutting process in nanoscale. In this study, the molecular dynamics (MD) method is employed to model and simulate the process of cutting monocrystalline copper. The two-body Morse potential and the many-body EAM potential are used for the atoms interaction in the workpiece to study the effect of different potential function on the simulation results. It is found that there are no obvious differences in the chip formation between Morse and EAM potential, but the Morse potential results in higher potential energy and more chips generated in the cutting process.


2021 ◽  
Author(s):  
Thomas E. Gartner III ◽  
Kelly M. Hunter ◽  
Eleftherios Lambros ◽  
Alessandro Caruso ◽  
Marc Riera ◽  
...  

For the last 50 years, researchers have sought molecular models that can accurately reproduce water’s microscopic structure and thermophysical properties across broad ranges of its complex phase diagram. Herein, molecular dynamics simulations with the many-body MB-pol model are performed to monitor the thermodynamic response functions and local structure of liquid water from the boiling point down to deeply supercooled temperatures at ambient pressure. The isothermal compressibility and isobaric heat capacity show maxima at ~223 K, in excellent agreement with recent experiments, and the liquid density exhibits a minimum at ~208 K. Furthermore, a local tetrahedral arrangement, where each water molecule accepts and donates two hydrogen bonds, is the most probable hydrogen-bonding topology at all temperatures. This work suggests that MB-pol may provide predictive capability for studies of liquid water’s physical properties across broad ranges of thermodynamic states.


2006 ◽  
Vol 924 ◽  
Author(s):  
Kazuhito Shintani ◽  
K. Terajima ◽  
Y. Kometani

ABSTRACTThe morphological evolution of a Co cluster deposited on a Cu substrate is investigated by means of molecular-dynamics simulation. The many-body potential based on the second moment approximation of a tight-binding Hamiltonian (TB-SMA) is employed to calculate the interactions between Co and Cu atoms. The results show that the effect of the substrate anisotropy appears in the morphology of a deposited cluster. It is also revealed that the total period of the structural change of such a cluster can be divided into the three stages, viz., (I)change to an epitaxial structure, (II)overspread of diffusing Cu atoms on the cluster, and (III)solid dissolution of Co atoms into the Cu substrate.


1968 ◽  
Vol 111 (1) ◽  
pp. 392-416 ◽  
Author(s):  
K DIETRICH ◽  
K HARA

Sign in / Sign up

Export Citation Format

Share Document